scholarly journals Implementation of Maintenance Scenario for Critical Subsystem In Aircraft Engine: Case Study NTP CT7 Engine

2017 ◽  
Vol 1 (02) ◽  
pp. 52
Author(s):  
Fransiskus Tatas Dwi Atmaji ◽  
Anna Annida Noviyanti ◽  
Widia Juliani

An aircraft company needs to "secure" their aircraft engine for a good maintenance system to keep the optimum engine's performance during the flight. This paper proposed maintenance analysis and scenario for the CT7, the main engine for aircraft at NTP company. A failure data record from four critical components of the CT7 engine is analyzed using Reliability Centered Maintenance (RCM) and Risk Based Maintenance (RBM) methods to obtain the optimum maintenance interval task for the critical subsystem of the CT7 engine and also seeing the risk of maintenance cost of the engine's failure effect. The RCM analysis result obtained seven scheduled on condition task, six scheduled discard task, and three scheduled restoration task. The interval of the maintenance schedule of each critical component varies according to the function obtained. And based RBM analysis, the risk from system performance loss is got $ 7.014.841, 90. Meanwhile, the total cost of maintenance interval based on a calculation of optimal time interval got $1.885.612, 82.

2018 ◽  
Vol 2 (01) ◽  
pp. 50-59
Author(s):  
Fransiskus Tatas Dwi Atmaji ◽  
Anna Annida Noviyanti ◽  
Widia Juliani

An aircraft company needs to "secure" their aircraft engine for a good maintenance system to keep the optimum engine's performance during the flight. This paper proposed maintenance analysis and scenario for the CT7, the main engine for aircraft at NTP company. A failure data record from four critical components of the CT7 engine is analyzed using Reliability Centered Maintenance (RCM) and Risk Based Maintenance (RBM) methods to obtain the optimum maintenance interval task for the critical subsystem of the CT7 engine and also seeing the risk of maintenance cost of the engine's failure effect.  The RCM analysis result obtained seven scheduled on condition task, six scheduled discard task, and three scheduled restoration task. The interval of the maintenance schedule of each critical component varies according to the function obtained. And based RBM analysis, the risk from system performance loss is got $ 7.014.841, 90. Meanwhile, the total cost of maintenance interval based on a calculation of optimal time interval got $1.885.612, 82. Keywords— preventive maintenance, reliability-centered maintenance, risk-based maintenance, risk priority number.


Rekayasa ◽  
2017 ◽  
Vol 10 (2) ◽  
pp. 99
Author(s):  
Cahyo Purnomo Prasetyo

<p>Penelitian ini bertujuan untuk menentukan kebijakan perawatan optimal yang dapat mengurangi biaya perbaikan (repair cost) dan biaya konsekwensi operasional (operational consequence cost). Metode yang diterapkan pada penelitian ini adalah Reliability Centered Maintenance (RCM) II. Penelitian ini difokuskan pada mesin Cane Cutter 1 dan 2 dengan pertimbangan beberapa aspek yaitu : pengaruh kegagalan terhadap pencapaian target produksi, resiko keselamatan kerja dan biaya perawatan yang akan ditimbulkan. Dari hasil penelitian dapat diketahui bahwa komponen kritis pada mesin Cane Cutter 1 dan 2 adalah : Pisau dan Baut Pisau. Perawatan yang dilakukan untuk mengantisipasi dan mengatasi kegagalan yang terjadi pada komponen mesin tersebut adalah proactive task yang meliputi : scheduled restoration task dan scheduled discard task. Rata-rata penurunan biaya perawatan total yang didapatkan dengan mengurangkan ‘biaya total pada interval perawatan awal’ dan ‘biaya total pada interval perawatan optimal’ adalah 14,82 %.</p><p>Kata Kunci: cane cutter, downtime, pabrik gula.</p><p><strong> </strong></p><p><strong>ABSTRACT</strong></p><p><em>This research aims to determine the optimal maintenance policy which could reduce repair cost and operational consequence cost. The methods which applied in this research is Reliability Centered Maintenance (RCM) II. This research focuses on Cane Cutter 1 and 2 machines by considering several aspects, such as and effect of any failure on production target achievement, work safety risk and maintenance cost which might be caused by the critical condition. The result showed that some critical components at the Cane Cutter 1 and 2 machines were : Blade and Blade Bolt. The maintenance which could be done to anticipate and deal with any failure occurring in the machine components was called proactive task comprising : scheduled restoration task and scheduled discard task. The average reduction in total maintenance costs which was obtained by subtracting ‘total costs at initial maintenance interval’ and ‘total costs at optimal maintenance interval’ amounted to 14,82 %.</em></p><p><em>Keywords: cane cutter, downtime, sugar factory</em></p>


2016 ◽  
Vol 11 (2) ◽  
pp. 73
Author(s):  
Diana Puspita Sari ◽  
Mukhammad Faizal Ridho

PT. Pisma Putra Textile adalah perusahaan yang bergerak di bidang pemintalan benang yang memiliki berbagai macam mesin produksi yang cukup sering mengalami kerusakan ketika digunakan pada proses produksi. Oleh karena itu, dibutuhkan kebijakan perawatan optimal yang dapat mengurangi frekuensi kerusakan dan menurunkan biaya perawatan mesin.. Metode yang diterapkan pada penelitian ini adalah Reliability Centered Maintenance (RCM) II. Penelitian difokuskan pada mesin Blowing I, karena memiliki downtime tertinggi. Berdasarkan frekuensi kerusakan mesin komponen yang paling sering rusak yaitu flat belt dan apron berpaku. Perawatan yang diperlukan dilakukan pada permukaan belt bergelombang, belt putus, kayu apron patah, dan paku-paku apron patah dengan scheduled discard task dengan interval perawatan dan Total Cost optimal berurutan yaitu 580 jam dengan TC Rp. 14661546,36, 465 jam dengan TC Rp 18350303,77, 490 jam dengan TC Rp 18966057,60, dan 450 jam dengan TC Rp 13419317,27. Sedangkan perawatan untuk kerusakan karet kendor adalah scheduled restoration task dengan interval perawatan 340 jam dan TC Rp 16338431,41. Total penurunan biaya keseluruhan sebesar Rp 21.587.975,45 atau  20,89% dari biaya perawataan perusahaan. Abstract PT. Pisma Putra Textile is a yarn spinning company which have various  production machines which often breakdown on production process. So, the company should have optimum maintenance policy which could reduce breakdown frequency and maintenance cost. The methods which applied in this research is Reliability Centered Maintenance (RCM). Based on data which was given, it shows that Blowing I Machine have the highest downtime so the research focuses on Blowing I Machine. Based on data which was given, it shows that Blowing I Machine have the highest downtime so the research focuses on Blowing I Machine. Based on machine’s breakdown frequency and total downtime, the results shows that the critical components on Blowing I Machine are flat belt and Apron berpaku component. Based on maintenance interval analysis and optimum total cost shows that maintenance for bumpy flat belt surface, flat belt cut-off, spike lattice wood cut-off, spike lattice cut-off with scheduled discard task is 580 hours and Rp 14.661.546,36 ; 465 hours and Rp. 18.350.303,77 ; 490 hours and Rp. 18.966.057,6 ; 450 hours and Rp. 13.419.317,27 respectively. Then, maintenance interval analysis and optimum total cost for flat belt looses with scheduled restoration task is 340 hours and Rp. 16.338.431,41. So, there's a reduction cost Rp. 21.587.975,45 or 20,89% lower than the company's maintenance cost.


Author(s):  
Zahid Hussain ◽  
Hamid Jan

The objective of this work was to enhance the product’s quality by concentrating on the machine’s optimized efficiency. In order to increase the machine’s reliability, the basis of reliability-centered maintenance approach was utilized. The purpose was to establish a planned preventive maintenance strategy to identify the machine’s critical components having a noteworthy effect on the product’s quality. The critical components were prioritized using failure mode and effect analysis (FMEA). The goal of the study was to decrease the ppm time interval for a CNC machine by simulating the projected preventive maintenance time interval. For this purpose, the simulation software ProModel 7.5 was implemented for the current preventive maintenance procedure to choose the best ppm time interval which contributed better norms. Five dissimilar optimization approaches were applied, however, the first approach yielded the prominent total system cost and the shorter ppm interval. The results of the study revealed that there was an increase of USD 1878 as a result of an increase in total system cost from USD 78,365 to USD 80,243. Preventive maintenance costs were reduced from USD 4196 to USD 2248 (46%). The costs associated with good parts increased from USD 8259 to USD 8294 (0.4%) and the costs associated with defective parts reduced from USD 171 to USD 3 (98.25%), respectively.


2018 ◽  
Vol 1 (2) ◽  
pp. 211-216
Author(s):  
Nurhayati Sembiring ◽  
Gita Ade Elvira

PT. XYZ adalah suatu perusahaan yang bergerak dalam bidang usaha perkebunan dan pengolahan hasil perkebunan.Produk utamanya adalah Minyak Sawit (CPO) dan Inti Sawit (Kernel). Apabila terjadi kerusakan mesin pada saat jam kerja mesin, maka proses produksi tidak berjalan. Untuk itu diperlukan sistem perawatan yang terjadwal. Tujuan dari penelitian ini adalah mengidentifikasi sumber utama kerusakan mesin, menganalisis kerusakan komponen kritis mesin dengan metode Reliability Centered Maintenance dan membuat jadwal perawatan mesin yang terencana. Komponen kritis pada mesin Screw Press yang dianalisaadalah Gearbox, Hydraulic Double Cone dan Van Belt. Hasil penelitian menunjukan selang waktu penggantian komponen Gearbox adalah 94 hari, komponen Hydraulic Double Cone adalah 105 hari dan komponen Van Belt adalah 116 hari.   PT. XYZ is a company engaged in the business of plantation and processing of plantation products. Its main products are crude palm oil (CPO) and palm kernel (kernel). If an engine failure occured during engine working hours, the production process does not work. For this reason, a scheduled maintenance system is needed. The purpose of this study is to identify the main source of engine failure, analyze the failure of critical engine components by using the Reliability Centered Maintenance method and making an engine maintenance schedule. The critical components on Screw Press engine which was analyzed were Gearbox, Hydraulic Double Cone and Van Belt. The results showed the replacement interval for Gearbox component was 94 days, Hydraulic Double Cone component was 105 days, and Van Belt component was 116 days.


2018 ◽  
Vol 38 (2) ◽  
pp. 166-174 ◽  
Author(s):  
Yong Zeng ◽  
Hongmei Tan ◽  
Dahan Chen

In this paper a probabilistic-based method for fatigue maintenance optimization of steel bridge’s welded joints, combined with linear elastic fracture mechanics (LEFM), the structure reliability, and life cycle cost method(LCCM) is proposed. The probabilistic analysis method can be used with the fatigue maintenance of steel bridges. Weld cracks are classified by its size and maintenance decisions, and are made according to its size classification. Maintenance cost is divided into inspection, repair and failure costs, according to the life cycle cost method. The maintenance optimization strategy is transformed to minimize the expected lifetime total costs with the constraints of the minimum acceptable reliability index to attain the most cost-optimal inspection and repair for the balanced costs between risk and safety. An example concerning the transverse stiffeners of welded components in the main girder of suspension bridge is investigated through the research of some parameters sensitivity. Among all the parameters, the inspection cost is the most remarkable. The optimal time interval of repair will delay based on the increase of the inspection cost. The optimal time interval of repair will advance based on the increase of repair cost. A discount rate can drastically change the value of the total cost, but when the probability of failure is very small, the increase of failure cost has little effect on the optimal time interval of repair. The method presented in this paper can be conducted using the similar maintenance of steel structures.


2018 ◽  
Vol 2 (02) ◽  
pp. 57-62
Author(s):  
Judi Alhilman ◽  
Fransiskus Tatas Dwi Atmaji ◽  
Valinouski Aulia

Over time a machine will get experience a decrease in reliability, causing the engine to be damaged at the time of operation, thus disrupting the production line. To maintain a machine remains reliable then a good maintenance system is required. In this research, we will use Reliability Centered Maintenance (RCM) and Reliability Centered Spare (RCS) analysis on the critical system of Goss Universal printing machine based on engine failure data. The result of RCM analysis obtained the optimal preventive maintenance schedule and the type of treatment, while based on the RCS analysis obtained spare part needs following the maintenance schedule. With the result of this analysis, is expected where the machine will keep good and will continue to operate without a sudden breakdown under the production schedule's need. Based on RCM analysis for each critical subsystem obtained interval preventive maintenance for transfer roller 127.60 hours, Ink fountain roller 24.45 hours, ink form roller 29.23 hours respectively, and the wash-up device is no scheduled maintenance. For spare parts inventory strategies the result using RCS method are: transfer roller104 units, ink fountain roller requires 32 units, ink form roller 36 units and are holding spare policy required, and a wash-up device no holding spare parts. Keywords— Failure data, Maintenance System, RCM, RCS


Author(s):  
Liza Nafiah Maulidina ◽  
Fransiskus Tatas Dwi Atmaji ◽  
Judi Alhilman

The objective of this research was to determine the optimal maintenance time interval for the selected critical components and the total cost of maintenance of a plastic injection machine. In determining the critical components, a risk matrix was used, and three components were selected, namely, hydraulic hose, barrel, and motor. Using the Reliability and Risk Centered Maintenance (RRCM) method, the researchers got a proposed maintenance policy and the total maintenance cost. Based on the result, it shows that there are seven proposed maintenance tasks with three scheduled oncondition tasks and four scheduled restoration tasks with an average maintenance interval of two months. The total maintenance cost proposed is IDR91.595.318. The cost is smaller compared to the actual maintenance costs of the company.


Tibuana ◽  
2021 ◽  
Vol 4 (02) ◽  
pp. 110-119
Author(s):  
Marcy L. Patiapon

Maintenance activities are generally considered as supporting activities in the production process. However, this activity is very important because it contributes directly to the smooth running of the production process and productivity. PT. XYZ is a company engaged in mass media or newspapers since September 8, 2015. In the newspaper production process, PT. XYZ experienced delays in the production process due to damage to the component parts of the printing machine, in which the Offset printing machine is the core printing machine that is always used to print newspapers. Based on data on the frequency of damage during 2020 which was obtained from observations and interviews with operators, damage to machine components for 1 year on the offset printing machine counted 73 times that it was damaged. Thus making the machine stop operating from the effective working time of the machine, which is 264 days/year. This is due to the unavailability of a machine maintenance schedule because the company is still implementing a breakdown maintenance system. Thus the researcher aims to calculate the value of the identified critical components and calculate the effective time of machine operation for scheduling replacement of critical components of offset printing machines using the Reliability Centered Maintenance method. Based on the results of data processing using the Reliability Centered Maintenance method, the contactor component is determined as a critical component where the value of the Risk Priority Number is 72 with an average checking time of 11,250 minutes and component replacement time of 7 times/year. For this reason, it can be concluded that the contactor is a critical component with a damage value of 72 and the scheduling time for component replacement is 7 times in 1 year.


2018 ◽  
Vol 154 ◽  
pp. 01056
Author(s):  
Fifi Herni Mustofa ◽  
Ria Ferdian Utomo ◽  
Kusmaningrum Soemadi

PT Lucas Djaja is a company engaged in the pharmaceutical industry which produce sterile drugs and non-sterile. Filling machine has a high failure rate and expensive corrective maintenance cost. PT Lucas Djaja has a policy to perform engine maintenance by way of corrective maintenance. The study focused on the critical components, namely bearing R2, bearing 625 and bearing 626. When the replacement of the failure done by the company is currently using the formula mean time to failure with the result of bearing R2 at point 165 days, bearing 625 at a point 205 days, and bearing 626 at a point 182 days. Solutions generated by using age replacement method with minimization of total maintenance cost given on the bearing R2 at a point 60 days, bearing 625 at the point of 80 days and bearing 626 at a point 40 days.


Sign in / Sign up

Export Citation Format

Share Document