Simulated Flight Testing of an Autonomous Unmanned Aerial Vehicle Using FlightGear

Author(s):  
Eric Sorton ◽  
Sonny Hammaker
2015 ◽  
Vol 3 (4) ◽  
pp. 192-204 ◽  
Author(s):  
Michael A. Thamann ◽  
Suzanne Weaver Smith ◽  
Sean C.C. Bailey ◽  
E. Brady Doepke ◽  
Scott W. Ashcraft

In this paper, an approach is described to implement autonomous (waypoint tracking) flight in a testbed airframe, which uses wing twist for roll control. These flights were performed using an existing commercial autopilot. Aileron effectiveness was identified as a parameter that could be modified to maintain roll control during autonomous flight. A modeling process was then developed to calculate the aileron effectiveness for a wing shaping demonstrator aircraft utilizing numerically determined aerodynamic properties. Simulations and flight tests with the testbed aircraft were performed that demonstrated suitability of the approach for autonomous flight. In-flight aileron doublets were used to validate the aileron effectiveness predicted by the numerical model, which matched within 7%.


2021 ◽  
pp. 106611
Author(s):  
Sungho Chang ◽  
Am Cho ◽  
Seongwook Choi ◽  
Youngshin Kang ◽  
Yushin Kim ◽  
...  

Author(s):  
Andrew Gomes Pereira Sarmento ◽  
Alain Souza ◽  
David Fernando Castillo Zuñiga ◽  
Luiz Carlos Sandoval Góes

2016 ◽  
Vol 842 ◽  
pp. 311-318
Author(s):  
Gesang Nugroho ◽  
Ali Ashar Rafsan Jani ◽  
Ridho Ramadhan Trio Sadewo ◽  
Muhammad Satrio

The manufacturing process of lightweight and strong (Unmanned Aerial Vehicle) UAV and composite aircraft flight testing capability is described in this research. Nowadays, UAV development becomes more creative and high technology. Mapping and monitoring process from a UAV will be more effective and efficient. Mapping and monitoring process needs high durability UAV so that development with lightweight and strong material is needed. Lightweight technology is very suitable applied in the UAV technology. The composite material has many benefits for an aerodynamics world. The composite material was made of fiberglass and resin, and this material was used in components that are not loaded to high loads. The aircraft industry uses fiberglass composites widely because of the stiffness, strength, and toughness of composite.This research was conducted by manufacturing an aircraft with a fiberglass composite. The first manufacturing process was making a master prototype from styrofoam and then the styrofoam master was used to make a mold. The next process is called hand lay-up in which fiberglass and resin were laid to the model to produce half side of the aircraft. The process refined by vacuum bag to obtain a thin, flat, and good surface of the aircraft. Aircraft flight testing is needed to obtain statistical of the stability in pitch, roll and altitude, so the data result will determine the feasibility of composite aircraft in this research. The flight data have shown that the aircraft has high stability on roll and pitch.


Author(s):  
Daisuke Kubo ◽  
Koji Muraoka ◽  
Noriaki Okada ◽  
Masaru Naruoka ◽  
Takeshi Tsuchiya ◽  
...  

2020 ◽  
Vol 20 (4) ◽  
pp. 332-342
Author(s):  
Hyung Jun Park ◽  
Seong Hee Cho ◽  
Kyung-Hwan Jang ◽  
Jin-Woon Seol ◽  
Byung-Gi Kwon ◽  
...  

2018 ◽  
pp. 7-13
Author(s):  
Anton M. Mishchenko ◽  
Sergei S. Rachkovsky ◽  
Vladimir A. Smolin ◽  
Igor V . Yakimenko

Results of experimental studying radiation spatial structure of atmosphere background nonuniformities and of an unmanned aerial vehicle being the detection object are presented. The question on a possibility of its detection using optoelectronic systems against the background of a cloudy field in the near IR wavelength range is also considered.


Sign in / Sign up

Export Citation Format

Share Document