Flame Response to Equivalence Ratio Fluctuations - Relationship Between Chemiluminescence and Heat Release

Author(s):  
Shreekrishna Shreekrishna ◽  
Tim Lieuwen
Author(s):  
Santosh Hemchandra

The coupling between heat release oscillations produced by equivalence ratio fluctuations with combustor acoustic modes in lean premixed combustion systems, is a serious problem that limits the operation envelope of these devices. Such oscillations are produced by an oscillating pressure drop across air inlets and/or fuel injectors due to the presence of acoustic oscillations. This results in fluctuations in mass flow rates of air and/or fuel entering the combustor, thereby, changing the local equivalence ratio of the mixture at these injector/inlet locations. These perturbations in equivalence ratio are advected by the flow into the flame, causing its heat release to oscillate. Detailed reduced order models for the heat release response of premixed flames to equivalence ratio oscillations, based on this phenomenological picture, have been developed in the past. A key problem in validating these models is the ambiguity of interpretation of chemiluminescence signals when, the length scale of equivalence ratio fluctuations is smaller than the characteristic flame length. As such, the present work performs a DNS of a premixed methane-air flame, subject to unsteady forcing in upstream methane mass fraction. Predictions from prior reduced order modelling approaches are compared with present DNS results. The agreement between modelling and DNS predictions in the characteristics of flame response is good at low excitation frequencies and amplitudes. This agreement, however, degrades as forcing amplitude and frequency increase due to the influence of hydrodynamic coupling between the flow-fields on either side of the flame as well as damping of equivalence ratio perturbations by diffusion, on the dynamics of the flame.


Author(s):  
Poravee Orawannukul ◽  
Jong Guen Lee ◽  
Bryan D. Quay ◽  
Domenic A. Santavicca

The response of a swirl-stabilized flame to equivalence ratio fluctuations is experimentally investigated in a single-nozzle lean premixed combustor. Equivalence ratio fluctuations are produced using a siren device to modulate the flow rate of fuel to the injector, while the air flow rate is kept constant. The magnitude and phase of the equivalence ratio fluctuations are measured near the exit of the nozzle using an infrared absorption technique. The flame response is characterized by the fluctuation in the flame’s overall rate of heat release, which is determined from the total CH* chemiluminescence emission from the flame. The relationship between total CH* chemiluminescence intensity and the flame’s overall rate of heat release is determined from a separate calibration experiment which accounts for the nonlinear relationship between chemiluminescence intensity and equivalence ratio. Measurements of the normalized equivalence ratio fluctuation and the normalized rate of heat release fluctuation are made over a range of modulation frequencies from 200 Hz to 440 Hz, which corresponds to Strouhal numbers from 0.4 to 2.8. These measurements are used to determine the fuel-forced flame transfer function which expresses the relationship between the equivalence ratio and rate of heat release fluctuations in terms of a gain and phase as a function of frequency. In addition, phase-synchronized CH* chemiluminescence images are captured to study the dynamics of the flame response over the modulation period. These measurements are made over a range of operating conditions and the results are analyzed to identify and better understand the mechanisms whereby equivalence ratio fluctuations result in fluctuations in the flame’s overall rate of heat release. Such information is essential to guide the formulation and validation of analytical fuel-forced flame response models and hence to predict combustion dynamics in gas turbine combustors.


Author(s):  
Bernhard C. Bobusch ◽  
Bernhard Ćosić ◽  
Jonas P. Moeck ◽  
Christian Oliver Paschereit

Equivalence ratio fluctuations are known to be one of the key factors controlling thermoacoustic stability in lean premixed gas turbine combustors. The mixing and thus the spatio-temporal evolution of these perturbations in the combustor flow is, however, difficult to account for in present low-order modeling approaches. To investigate this mechanism, experiments in an atmospheric combustion test rig are conducted. To assess the importance of equivalence ratio fluctuations in the present case, flame transfer functions for different injection positions are measured. By adding known perturbations in the fuel flow using a solenoid valve, the influence of equivalence ratio oscillations on the heat release rate is investigated. The spatially and temporally resolved equivalence ratio fluctuations in the reaction zone are measured using two optical chemiluminescence signals, captured with an intensified camera. A steady calibration measurement allows for the quantitative assessment of the equivalence ratio fluctuations in the flame. This information is used to obtain a mixing transfer function, which relates fluctuations in the fuel flow to corresponding fluctuations in the equivalence ratio of the flame. The current study focuses on the measurement of the global, spatially integrated, transfer function for equivalence ratio fluctuations and the corresponding modeling. In addition, the spatially resolved mixing transfer function is shown and discussed. The global mixing transfer function reveals that despite the good spatial mixing quality of the investigated generic burner, the ability to damp temporal fluctuations at low frequencies is rather poor. It is shown that the equivalence ratio fluctuations are the governing heat release rate oscillation response mechanism for this burner in the low-frequency regime. The global transfer function for equivalence ratio fluctuations derived from the measurements is characterized by a pronounced low-pass characteristic, which is in good agreement with the presented convection–diffusion mixing model.


Author(s):  
Uyi Idahosa ◽  
Saptarshi Basu ◽  
Ankur Miglani

This paper reports an experimental investigation of dynamic response of nonpremixed atmospheric swirling flames subjected to external, longitudinal acoustic excitation. Acoustic perturbations of varying frequencies (fp = 0–315 Hz) and velocity amplitudes (0.03 ≤ u′/Uavg ≤ 0.30) are imposed on the flames with various swirl intensities (S = 0.09 and 0.34). Flame dynamics at these swirl levels are studied for both constant and time-dependent fuel flow rate configurations. Heat release rates are quantified using a photomultiplier (PMT) and simultaneously imaged with a phase-locked CCD camera. The PMT and CCD camera are fitted with 430 nm ±10 nm band pass filters for CH* chemiluminescence intensity measurements. Flame transfer functions and continuous wavelet transforms (CWT) of heat release rate oscillations are used in order to understand the flame response at various burner swirl intensity and fuel flow rate settings. In addition, the natural modes of mixing and reaction processes are examined using the magnitude squared coherence analysis between major flame dynamics parameters. A low-pass filter characteristic is obtained with highly responsive flames below forcing frequencies of 200 Hz while the most significant flame response is observed at 105 Hz forcing mode. High strain rates induced in the flame sheet are observed to cause periodic extinction at localized regions of the flame sheet. Low swirl flames at lean fuel flow rates exhibit significant localized extinction and re-ignition of the flame sheet in the absence of acoustic forcing. However, pulsed flames exhibit increased resistance to straining due to the constrained inner recirculation zones (IRZ) resulting from acoustic perturbations that are transmitted by the co-flowing air. Wavelet spectra also show prominence of low frequency heat release rate oscillations for leaner (C2) flame configurations. For the time-dependent fuel flow rate flames, higher un-mixedness levels at lower swirl intensity is observed to induce periodic re-ignition as the flame approaches extinction. Increased swirl is observed to extend the time-to-extinction for both pulsed and unpulsed flame configurations under time-dependent fuel flow rate conditions.


Author(s):  
Vishal Acharya ◽  
Timothy Lieuwen

Flow oscillations associated with hydrodynamic instabilities comprise a key element of the feedback loop during self-excited combustion driven oscillations. This work is motivated in particular by the question of how to scale thermoacoustic stability results from single nozzle or sector combustors to full scale systems. Specifically, this paper considers the response of non-axisymmetric flames to helical flow disturbances of the form u^i′∝expimθ where m denotes the helical mode number. This work closely follows prior studies of the response of axisymmetric flames to helical disturbances. In that case, helical modes induce strong flame wrinkling, but only the axisymmetric, m = 0 mode, leads to fluctuations in overall flame surface area and, therefore, heat release. All other helical modes induce local area/heat release fluctuations with azimuthal phase variations that cancel each other out when integrated over all azimuthal angles. However, in the case of mean flame non-axisymmetries, the azimuthal deviations on the mean flame surface inhibit such cancellations and the asymmetric helical modes (m ≠ 0) cause a finite global flame response. In this paper, a theoretical framework for non-axisymmetric flames is developed and used to illustrate how the flame shape influences which helical modes lead to net flame surface area fluctuations. Example results are presented which illustrate the contributions made by these asymmetric helical modes to the global flame response and how this varies with different control parameters such as degree of asymmetry in the mean flame shape or Strouhal number. Thus, significantly different sensitivities may be observed in single and multi-nozzle flames in otherwise identical hardware in flows with strong helical disturbances, if there are significant deviations in time averaged flame shape between the two, particularly if one of the cases is nearly axisymmetric.


Author(s):  
Vishal Acharya ◽  
Tim Lieuwen

Abstract Premixed flames are sensitive to flow disturbances, which can arise from acoustic or vortical fluctuations. For transverse instabilities, it is known that a dominant mechanism for flame response is “injector coupling”, whereby pressure oscillations associated with transverse waves excite axial flow disturbances. These axial flow disturbances then excite heat release oscillations. The objective of this paper is to consider another mechanism — the direct sensitivity of the unsteady heat release to transverse acoustic waves, and to compare its significance relative to the induced axial disturbances, in a linear framework. The rate at which the flame adds energy to the disturbance field is quantified using the Rayleigh criterion and evaluated over a range of control parameters, such as flame length and swirl number. The results show that radial modes induce heat release fluctuations that always add energy to the acoustic field, whereas heat release fluctuations induced by mixed radial-azimuthal modes can add or remove energy. These amplification rates are then compared to the flame response from induced axial fluctuations. For combustor centered flames, these results show that the direct excitation mechanism has negligible amplification rates relative to the induced axial mechanism for radial modes. For transverse modes, the fact that the nozzle is located at a pressure node indicates that negligible induced axial velocity disturbances are excited; as such, the direct mechanism dominates. For flames that are not centered on pressure nodes, the direct mechanism for mixed-modes, dominates for certain nozzle locations and flame angles.


Author(s):  
Brian Jones ◽  
Jong Guen Lee ◽  
Bryan D. Quay ◽  
Domenic A. Santavicca

The response of turbulent premixed flames to inlet velocity fluctuations is studied experimentally in a lean premixed, swirl-stabilized, gas turbine combustor. Overall chemiluminescence intensity is used as a measure of the fluctuations in the flame’s global heat release rate, and hot wire anemometry is used to measure the inlet velocity fluctuations. Tests are conducted over a range of mean inlet velocities, equivalence ratios, and velocity fluctuation frequencies, while the normalized inlet velocity fluctuation (V′/Vmean) is fixed at 5% to ensure linear flame response over the employed modulation frequency range. The measurements are used to calculate a flame transfer function relating the velocity fluctuation to the heat release fluctuation as a function of the velocity fluctuation frequency. At low frequency, the gain of the flame transfer function increases with increasing frequency to a peak value greater than 1. As the frequency is further increased, the gain decreases to a minimum value, followed by a second smaller peak. The frequencies at which the gain is minimum and achieves its second peak are found to depend on the convection time scale and the flame’s characteristic length scale. Phase-synchronized CH∗ chemiluminescence imaging is used to characterize the flame’s response to inlet velocity fluctuations. The observed flame response can be explained in terms of the interaction of two flame perturbation mechanisms, one originating at flame-anchoring point and propagating along the flame front and the other from vorticity field generated in the outer shear layer in the annular mixing section. An analysis of the phase-synchronized flame images show that when both perturbations arrive at the flame at the same time (or phase), they constructively interfere, producing the second peak observed in the gain curves. When the perturbations arrive at the flame 180 degrees out-of-phase, they destructively interfere, producing the observed minimum in the gain curve.


Sign in / Sign up

Export Citation Format

Share Document