scholarly journals Utility of a novel exoscope, ORBEYE, in gravity-assisted brain retraction surgery for midline lesions of the brain

2021 ◽  
Vol 12 ◽  
pp. 339
Author(s):  
Noriyuki Kijima ◽  
Manabu Kinoshita ◽  
Masatoshi Takagaki ◽  
Haruhiko Kishima

Background: Midline brain lesions, such as falx meningioma, arteriovenous malformations, and cavernous malformations, are usually approached from the ipsilateral interhemispheric fissure. To this end, patients are positioned laterally with the ipsilateral side up. However, some studies have reported the usefulness of gravity-assisted brain retraction surgery, in which patients are placed laterally with the ipsilateral side down or up, enabling surgeons to approach the lesions through the ipsilateral side or through a contralateral interhemispheric fissure, respectively. This surgery requires less brain retraction. However, when using an operative microscope, performing this surgery requires the surgeon to operate in an awkward position. A recently developed high-definition (4K-HD) 3-D exoscope system, ORBEYE, can improve the surgeon’s posture while performing gravity-assisted brain retraction surgery. Methods: We report five cases with midline brain tumors managed by resectioning with gravity-assisted brain retraction surgery using ORBEYE. We also performed an ergonomic analysis of gravity-assisted brain retraction surgery with a craniotomy model and a neuronavigation system. Results: Gravity-assisted brain retraction surgery to the midline brain tumors was successfully performed for all five patients, using ORBEYE, without any postoperative neurological deficit. Conclusion: Gravity-assisted brain retraction surgery to the midline brain lesions using ORBEYE is feasible, and ORBEYE is ergonomically more favorable than a microscope. ORBEYE has the potential to generalize neurosurgical approaches considered difficult due to the surgeon’s awkward position, such as gravity-assisted brain retraction surgery.

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi224-vi225
Author(s):  
Katharina Rosengarth ◽  
Katharina Hense ◽  
Tina Plank ◽  
Mark Greenlee ◽  
Christina Wendl ◽  
...  

Abstract OBJECTIVE Space-occupying brain lesions as brain tumors in the occipital lobe have only been sparsely investigated so far, as this localization is extremely rare with only 1% of cases. It is still unclear how this affects the overall organization of the visual system. We investigated functional connectivity of functional networks associated with higher visual processing between patients with occipital space-occupying lesion in the occipital cortex and healthy controls. METHODS 12 patients with brain tumors, 7 patients with vascular lesions in the occipital cortex and 19 healthy subjects matched for age and sex were included. During functional MRI patients and subjects performed a visual excentricity mapping task. Data analysis was done using CONN toolbox based on Matlab. See-to-ROI connectivities of 23 Regions of Interest (ROIs) implemented in the CONN toolbox which were assigned to the Default Mode, Visual, Salience, Dorsal Attention, and Frontoparietal network were assessed. For each subject, connectivity was calculated using Fischer transformed pairwise correlations. These correlations were first considered separately for each group in one-sample analyses and then compared between the groups. RESULTS Main results show, that compared to control subjects and vascular patients, tumor patients showed weaker intra-network connectivity of components of all networks except the default-network. Tumor patients showed even stronger between-network connectivity in the default-mode network compared to the other groups. Weaker connectivity was observed within the salience network in both patient groups compared to controls. CONCLUSION The results indicate that in the course of the disease, compensatory countermeasures take place in the brain against a brain tumor or a space-occupying brain lesion with the aim of maintaining the performance level and cognitive processes for as long as possible. However, more research is needed in this area to understand the mechanisms and effects of brain tumors and space-consuming brain lesions on surrounding tissue.


2018 ◽  
Vol 15 (4) ◽  
pp. 404-411 ◽  
Author(s):  
Justin Mascitelli ◽  
Jan-Karl Burkhardt ◽  
Sirin Gandhi ◽  
Michael T Lawton

Abstract BACKGROUND Surgical resection of cavernous malformations (CM) in the posterior thalamus, pineal region, and midbrain tectum is technically challenging owing to the presence of adjacent eloquent cortex and critical neurovascular structures. Various supracerebellar infratentorial (SCIT) approaches have been used in the surgical armamentarium targeting lesions in this region, including the median, paramedian, and extreme lateral variants. Surgical view of a posterior thalamic CM from the traditional ipsilateral vantage point may be obscured by occipital lobe and tentorium. OBJECTIVE To describe a novel surgical approach via a contralateral SCIT (cSCIT) trajectory for resecting posterior thalamic CMs. METHODS From 1997 to 2017, 75 patients underwent the SCIT approach for cerebrovascular/oncologic pathology by the senior author. Of these, 30 patients underwent the SCIT approach for CM resection, and 3 patients underwent the cSCIT approach. Historical patient data, radiographic features, surgical technique, and postoperative neurological outcomes were evaluated in each patient. RESULTS All 3 patients presented with symptomatic CMs within the right posterior thalamus with radiographic evidence of hemorrhage. All surgeries were performed in the sitting position. There were no intraoperative complications. Neuroimaging demonstrated complete CM resection in all cases. There were no new or worsening neurological deficits or evidence of rebleeding/recurrence noted postoperatively. CONCLUSION This study establishes the surgical feasibility of a contralateral SCIT approach in resection of symptomatic thalamic CMs It demonstrates the application for this procedure in extending the surgical trajectory superiorly and laterally and maximizing safe resectability of these deep CMs with gravity-assisted brain retraction.


Neurosurgery ◽  
2011 ◽  
Vol 69 (3) ◽  
pp. 696-705 ◽  
Author(s):  
Andrea Romano ◽  
Giancarlo D'Andrea ◽  
Luigi Fausto Calabria ◽  
Valeria Coppola ◽  
Camilla Rossi Espagnet ◽  
...  

Abstract BACKGROUND: Magnetic resonance with diffusion tensor image (DTI) may be able to estimate trajectories compatible with subcortical tracts close to brain lesions. A limit of DTI is brain shifting (movement of the brain after dural opening and tumor resection). OBJECTIVE: To calculate the brain shift of trajectories compatible with the corticospinal tract (CST) in patients undergoing glioma resection and predict the shift directions of CST. METHODS: DTI was acquired in 20 patients and carried out through 12 noncollinear directions. Dedicated software “merged” all sequences acquired with tractographic processing and the whole dataset was sent to the neuronavigation system. Preoperative, after dural opening (in 11) and tumor resection (in all) DTI acquisitions were performed to evaluate CST shifting. The extent of shifting was considered as the maximum distance between the preoperative and intraoperative contours of the trajectories. RESULTS: An outward shift of CST was observed in 8 patients and an inward shift in 10 patients during surgery. In the remaining 2 patients, no intraoperative displacement was detected. Only peritumoral edema showed a statistically significant correlation with the amount of shift. In those patients in which DTI was acquired after dural opening as well (11 patients), an outward shifting of CST was evident in that phase. CONCLUSION: The use of intraoperative DTI demonstrated brain shifting of the CST. DTI evaluation of white matter tracts can be used during surgical procedures only if updated with intraoperative acquisitions.


2021 ◽  
Author(s):  
Jonathon J Parker ◽  
Ryan M Jamiolkowski ◽  
Gerald A Grant ◽  
Scheherazade Le ◽  
Casey H Halpern

Abstract BACKGROUND Precise targeting of cortical surface electrodes to epileptogenic regions defined by anatomic and electrophysiological guideposts remains a surgical challenge during implantation of responsive neurostimulation (RNS) devices. OBJECTIVE To describe a hybrid fluoroscopic and neurophysiological technique for targeting of subdural cortical surface electrodes to anatomic regions with limited direct visualization, such as the interhemispheric fissure. METHODS Intraoperative two-dimensional (2D) fluoroscopy was used to colocalize and align an electrode for permanent device implantation with a temporary in Situ electrode placed for extraoperative seizure mapping. Intraoperative phase reversal mapping technique was performed to distinguish primary somatosensory and motor cortex. RESULTS We applied these techniques to optimize placement of an interhemispheric strip electrode connected to a responsive neurostimulator system for detection and treatment of seizures arising from a large perirolandic cortical malformation. Intraoperative neuromonitoring (IONM) phase reversal technique facilitated neuroanatomic mapping and electrode placement. CONCLUSION In challenging-to-access anatomic regions, fluoroscopy and intraoperative neurophysiology can be employed to augment targeting of neuromodulation electrodes to the site of seizure onset zone or specific neurophysiological biomarkers of clinical interest while minimizing brain retraction.


2018 ◽  
Vol 16 (6) ◽  
pp. 717-725 ◽  
Author(s):  
Alexander A Khalessi ◽  
Ralph Rahme ◽  
Robert C Rennert ◽  
Pia Borgas ◽  
Jeffrey A Steinberg ◽  
...  

ABSTRACT BACKGROUND During its development and preclinical assessment, a novel, 3-dimensional (3D), high-definition (4K-HD) exoscope system was formerly shown to provide an immersive surgical experience, while maintaining a portable, low-profile design. OBJECTIVE To assess the clinical applicability of this 3D 4K-HD exoscope via first-in-man surgical use. METHODS The operative workflow, functionality, and visual haptics of the 3D 4K-HD exoscope were assessed in a variety of microneurosurgical cases at 2 US centers. RESULTS Nineteen microneurosurgical procedures in 18 patients were performed exclusively using the 3D 4K-HD exoscope. Pathologies treated included 4 aneurysms, 3 cavernous malformations (1 with intraoperative electrocorticography), 2 arteriovenous malformations, 1 foramen magnum meningioma, 1 convexity meningioma, 1 glioma, 1 occipital cyst, 1 chiari malformation, 1 carotid endarterectomy, 1 subdural hematoma, 1 anterior cervical discectomy and fusion, and 2 lumbar laminectomies. All patients experienced good surgical and clinical outcomes. Similar to preclinical assessments, the 3D 4K-HD exoscope provided an immersive 3D surgical experience for the primary surgeon, assistants, and trainees. The small exoscope frame, large depth of field, and hand/foot pedal controls improved exoscope mobility, decreased need to re-focus, and provided unobstructed operative corridors. Flexible positioning of the camera allows the surgeon's posture to be kept in a neutral position with uncompromised viewing angles. CONCLUSION The first-in-man clinical experience with the 3D 4K-HD exoscope confirms its excellent optics and ergonomics for the entire operative team, with high workflow adaptability for a variety of microneurosurgical cases. Expanded clinical use of the 3D 4K-HD exoscope is justified.


2012 ◽  
Vol 10 (3) ◽  
pp. 168-174 ◽  
Author(s):  
Jonathan Roth ◽  
Robert F. Keating ◽  
John S. Myseros ◽  
Amanda L. Yaun ◽  
Suresh N. Magge ◽  
...  

Object Rising numbers of MRI studies performed during evaluations for pediatric disorders have contributed to a significant increase in the number of incidentally found brain tumors. Currently, there is very little literature on the nature of and the preferred treatment for these incidental brain tumors. In this paper the authors review their experience diagnosing and treating these lesions in children as well as the current literature on this topic. Methods Records from 2 centers were reviewed for incidentally found brain tumors, treatment approaches, and outcomes for both surgical and nonsurgical cohorts. Results Forty-seven children (30 males and 17 females) with a mean age of 8.6 years were found to have incidental brain lesions suspected to be neoplasms. Twenty-five underwent surgery and 22 were observed. Two children in the observation group required surgery at a later stage. Tumor pathology in 24 patients was benign. Only 3 patients had high-grade tumors. All nonsurgically treated lesions were presumed to be low-grade tumors and were followed up for 25 ± 20 months. Conclusions The discovery of incidental brain tumors on MRI in children poses an increasing challenge. Additional studies are needed to determine the significance as well as the optimal management strategies in this situation.


2016 ◽  
Vol 125 (6) ◽  
pp. 1431-1442 ◽  
Author(s):  
Lucia Bulubas ◽  
Jamil Sabih ◽  
Afra Wohlschlaeger ◽  
Nico Sollmann ◽  
Theresa Hauck ◽  
...  

OBJECTIVE Because of its huge clinical potential, the importance of premotor areas for motor function itself and plastic reshaping due to tumors or ischemic brain lesions has received increased attention. Thus, in this study the authors used navigated transcranial magnetic stimulation (nTMS) to investigate whether tumorous brain lesions induce a change in motor cortex localization in the human brain. METHODS Between 2010 and 2013, nTMS motor mapping was performed in a prospective cohort of 100 patients with brain tumors in or adjacent to the rolandic cortex. Spatial data analysis was performed by normalization of the individual motor maps and creation of overlays according to tumor location. Analysis of motor evoked potential (MEP) latencies was performed regarding mean overall latencies and potentially polysynaptic latencies, defined as latencies longer than 1 SD above the mean value. Hemispheric dominance, lesion location, and motor-function deficits were also considered. RESULTS Graphical analysis showed that motor areas were not restricted to the precentral gyrus. Instead, they spread widely in the anterior-posterior direction. An analysis of MEP latency showed that mean MEP latencies were shortest in the precentral gyrus and longest in the superior and middle frontal gyri. The percentage of latencies longer than 1 SD differed widely across gyri. The dominant hemisphere showed a greater number of longer latencies than the nondominant hemisphere (p < 0.0001). Moreover, tumor location–dependent changes in distribution of polysynaptic latencies were observed (p = 0.0002). Motor-function deficit did not show any statistically significant effect. CONCLUSIONS The distribution of primary and polysynaptic motor areas changes in patients with brain tumors and highly depends on tumor location. Thus, these data should be considered for resection planning.


2015 ◽  
Vol 123 (5) ◽  
pp. 1133-1144 ◽  
Author(s):  
Amir H. Faraji ◽  
Kumar Abhinav ◽  
Kevin Jarbo ◽  
Fang-Cheng Yeh ◽  
Samuel S. Shin ◽  
...  

OBJECT Brainstem cavernous malformations (CMs) are challenging due to a higher symptomatic hemorrhage rate and potential morbidity associated with their resection. The authors aimed to preoperatively define the relationship of CMs to the perilesional corticospinal tracts (CSTs) by obtaining qualitative and quantitative data using high-definition fiber tractography. These data were examined postoperatively by using longitudinal scans and in relation to patients’ symptomatology. The extent of involvement of the CST was further evaluated longitudinally using the automated “diffusion connectometry” analysis. METHODS Fiber tractography was performed with DSI Studio using a quantitative anisotropy (QA)-based generalized deterministic tracking algorithm. Qualitatively, CST was classified as being “disrupted” and/or “displaced.” Quantitative analysis involved obtaining mean QA values for the CST and its perilesional and nonperilesional segments. The contralateral CST was used for comparison. Diffusion connectometry analysis included comparison of patients’ data with a template from 90 normal subjects. RESULTS Three patients (mean age 22 years) with symptomatic pontomesencephalic hemorrhagic CMs and varying degrees of hemiparesis were identified. The mean follow-up period was 37.3 months. Qualitatively, CST was partially disrupted and displaced in all. Direction of the displacement was different in each case and progressively improved corresponding with the patient’s neurological status. No patient experienced neurological decline related to the resection. The perilesional mean QA percentage decreases supported tract disruption and decreased further over the follow-up period (Case 1, 26%–49%; Case 2, 35%–66%; and Case 3, 63%–78%). Diffusion connectometry demonstrated rostrocaudal involvement of the CST consistent with the quantitative data. CONCLUSIONS Hemorrhagic brainstem CMs can disrupt and displace perilesional white matter tracts with the latter occurring in unpredictable directions. This requires the use of tractography to accurately define their orientation to optimize surgical entry point, minimize morbidity, and enhance neurological outcomes. Observed anisotropy decreases in the perilesional segments are consistent with neural injury following hemorrhagic insults. A model using these values in different CST segments can be used to longitudinally monitor its craniocaudal integrity. Diffusion connectometry is a complementary approach providing longitudinal information on the rostrocaudal involvement of the CST.


2021 ◽  
Vol 22 (1) ◽  
pp. 218-226
Author(s):  
I.A. IMedyanik ◽  
A.S. Gordetsov ◽  
O.V. Krasnikova ◽  
A.R. Kondratyeva1 ◽  
S.K. Badu ◽  
...  

The study considers the results of application of blood serum infrared spectroscopy as a diagnosis method of brain tumors with various morphological structure. The study involves 99 patients with brain tumors (glioblastomas were diagnosed in 22 patients, astrocytomas – in 21, neuromas – in 13, meningiomas – in 12, ependymomas – in 11, oligodendroastrocytomas – in 10, hypophyseal adenomas – in 10 patients), 16 patients with acute cerebrovascular accidents of ischemic type, 24 patients with severe traumatic brain injury and 20 healthy volunteers. In each studied case, 13 ratios of peak heights of blood serum infrared spectrum absorption bands were studied applying infrared spectroscopy (IRS). The results of morphological and immunohistochemical examinations were compared with the results of blood serum IRS data of patients with brain tumors. There were statistically significant correlations between the histological nature of brain tumors and IRS values. Statistically significant differences between the blood serum IRS of patients with tumor, non-tumor brain lesions and healthy volunteers were also found.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tomoya Kinouchi ◽  
Yasuyuki Morishima ◽  
Shinichi Uyama ◽  
Tadashi Miyamoto ◽  
Hidehisa Horiguchi ◽  
...  

Abstract Background Taenia solium, present in most developing countries, infects many individuals and may result in their death. Neurocysticercosis (NCC) develops after invasion of the brain by parasitic larvae. It is the most common parasitic disease of the human central nervous system. On imaging scans it can be similar to brain tumors. We report a patient with a metastatic brain tumor and NCC. The co-presence of NCC was diagnosed based on specific neuroimaging- and epidemiologic findings. Case presentation A 36-year-old non-smoking Japanese woman with a history of non-small-cell lung cancer had undergone resection of the lower lobe followed by cytotoxic chemotherapy 2 years before apparently suffering recurrence. A positron emission computed tomography (PET) scan incidentally revealed multiple intracranial cold spots exhibiting differences in their shape and size. On brain magnetic resonance imaging (MRI) scans we observed many different patterns of peripheral edema and gadolinium-enhancing effects. As she had often visited Latin America and Southeast Asia and had eaten raw pork and Kimchi, we suspected that the brain lesions were due to NCC rather than metastatic brain tumors. However, serum immunoblotting assay and DNA analysis were negative for T. solium. Rather than performing resection, we administered albendazole (ABZ) and dexamethasone because her earlier cytotoxic chemotherapy had elicited severe pancytopenia. Except for a single large lesion in the left frontal lobe, this treatment resulted in a significant reduction in the size of these lesions and a decrease in perilesional edema. She underwent resection of the residual lesion 10 months later. Histology revealed it to be a metastatic tumor. Polymerase chain reaction (PCR) assay for NCC was negative. In the course of 11-months follow-up there has been no recurrence. Conclusion This is the first presentation of NCC in a Japanese woman with a metastatic brain tumor. NCC was incidentally discovered on PET scans and, based on her travel history and epidemiological findings; it was diagnosed and successfully treated with ABZ. NCC is endemic in most developing countries and as visits to such countries have increased, NCC must be ruled out in patients with multiple cystic nodular brain lesions.


Sign in / Sign up

Export Citation Format

Share Document