scholarly journals The Use of Disintegration Ratio in Evaluating Rock Durability in Selected Mudrock Samples in Indonesia

Author(s):  
Misbahudin Misbahudin ◽  
Imam Achmad Sadisun

Characterization of durability of mudrocks is important regarding its slaking behaviour within a short time when exposed to and or interact with water. Some relevant cases that occurred due to slaking are damage to roads and slope failures along the Cipularang and Cipali Toll Road. Current engineering activities related to the presence of mudrocks are being and will be held in several locations in Indonesia such as the construction of the Cisumdawu Toll Road in Ujungjaya District, Sumedang and building the National Observatory in Timau District, Kupang. This research is useful for providing engineering considerations related to those activities. The methods used in this research included X-ray diffraction to obtain mineralogy of mudrock, laboratory testing of physical properties of rocks such as dry density, water content, porosity, absorption and mudrocks durability tests. Durability of rocks was determined by disintegration index test. Testing was carried out by wetting and drying of rock samples. Test results showed that the average disintegration ratio of claystones, shales, mudstones and siltstones are 0.1035, 0.2183, 0.4942 and 0.9900. Slaking mode occurs to claystones, mudstones and shales is body slaking while dispersion slaking occurs to siltstones. Evaluation of the durability of mudrocks in this research indicates that siltstones have the highest durability characterized by very slow disintegration, followed by mudstones, shales and claystones at the lowest with very quick disintegration. Disintegration ratio from the disintegration index test characterizes the durability of mudrocks in more details. It can be concluded that porosity and absorption are incorporated into the main factors affecting the durability of mudrocks.

1992 ◽  
Vol 57 (4) ◽  
pp. 794-798 ◽  
Author(s):  
Long Yu ◽  
Wenqin Pang

Five new types of microporous beryllophosphates were hydrothermally synthesized using BeO-P2O5-R-MCl (or MCl2)-H2O, R being cyclohexylamine (CHA), pyrrolidine, 1-butylamine or triethylamine, M alkali or alkali earth cation. X-Ray diffraction patterns (XRD), infrared (IR), TG-DT and elemental analysis show that the crystalline beryllophosphates have novel, unique framework structures, composed from basic units of tetrahedral PO4 and BeO4. These materials exhibit zeolite-like adsorption and ion-exchange properties. Factors affecting the product crystallization (as e.g. pH), type of cation and composition of reaction mixture are discussed.


Author(s):  
Anubha Bhatla ◽  
Y. Lawrence Yao

Crystallinity of semicrystalline polymers such as aliphatic homopolymer poly(L-lactic acid) (PLLA) affects their degradation and physical properties. In this paper, the effects of laser irradiation using the third harmonic of a Nd:YAG laser on the crystallinity, long-range order, and short-range conformations at the surface of PLLA films are investigated. The factors affecting the transformation are also studied. Detailed characterization of the effect of laser treatment is accomplished using microscopy, X-ray diffraction, and infrared spectroscopy. The cooling rates in the process and the spatial and temporal temperature profiles are numerically examined. The simulation results in conjunction with melting and crystallization kinetics of PLLA are used to understand the effect on sample crystallinity. The effects of laser fluence and annealing conditions on the crystallinity of the processed films are examined. Since degradation profiles depend on crystallinity, laser processing can potentially be used to achieve a modified spatially controlled polymer surface with promising applications such as controlled drug delivery.


2013 ◽  
Vol 12 (05) ◽  
pp. 1350031
Author(s):  
J. C. ZHOU ◽  
Y. Y. WANG ◽  
X. L. GONG ◽  
S. W. LI

CuInSe 2 (CIS)-based powders were successfully prepared by a facile refluxing reaction route using metal halides and Se / S powder as raw starting materials. The phase and crystallographic structure, morphology, chemical composition of the products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS). It is found that single phase CIS powders with chalcopyrite structure can be prepared in a relatively short time using triethylenetetramine as the solvent; the most suitable reaction temperature and time are 200°C, 1–2 h, respectively. CuIn ( S x Se 1-x)2 powders were also prepared by refluxing reaction route using the mixed solvent of triethylenetetramine–glycol (1:1, v/v). The characterizations showed that the CuIn ( S x Se 1-x)2 has single chalcopyrite phase, and the stoichiometric composition closely follows the primary mixed ratio. The morphology of CuIn ( S x Se 1-x)2 is close to spheres, and the particle sizes become distinctly smaller with the incorporation of S . A possible formation mechanism of CuInSe 2 was put forward and briefly discussed.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 490
Author(s):  
María Montserrat Cruz-Benítez ◽  
Pablo Gónzalez-Morones ◽  
Ernesto Hernández-Hernández ◽  
José Roberto Villagómez-Ibarra ◽  
Javier Castro-Rosas ◽  
...  

In this work, we report the synthesis of graphene oxide (GO) nanohybrids with starch, fructose, and micro-cellulose molecules by sonication in an aqueous medium at 90 °C and a short reaction time (30 min). The final product was washed with solvents to extract the nanohybrids and separate them from the organic molecules not grafted onto the GO surface. Nanohybrids were chemically characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy and analyzed by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray diffraction (XRD). These results indicate that the ultrasound energy promoted a chemical reaction between GO and the organic molecules in a short time (30 min). The chemical characterization of these nanohybrids confirms their covalent bond, obtaining a grafting percentage above 40% the weight in these nanohybrids. This hybridization creates nanometric and millimetric nanohybrid particles. In addition, the grafted organic molecules can be crystallized on GO films. Interference in the ultrasound waves of starch hybrids is due to the increase in viscosity, leading to a partial hybridization of GO with starch.


2011 ◽  
Vol 335-336 ◽  
pp. 1493-1498 ◽  
Author(s):  
Ying Ning He ◽  
Kai Guo ◽  
Jin Zhou Chen ◽  
Ming Jun Niu ◽  
Wan Jie Wang ◽  
...  

To improve the toughness of PLA, Poly(lactic acid) (PLA)/organically modified montmorillonite (OMMT) nanocomposites were prepared via a masterbatching method. Melt index test indicated that nanocomposites had a better processability compared with pure PLA. When the loading of MMT was 3 wt%, the nanocomposites showed the maximum tensile strength (63.81MPa), and its elongation at break increased by 2.6 times compared with pure PLA. The thermal properties and crystallization behaviors of pure PLA and nanocomposites were studied by Differential Scanning Calorimeter (DSC). With OMMT loaded, the crystallinity of PLA in nanocomposites increased from 7.34% to 16.66%. The microstructure and morphology were studied by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). It revealed that the average grain size reduced compared with pure PLA, and most of layer structure of OMMT was exfoliated.


2011 ◽  
Vol 673 ◽  
pp. 155-160 ◽  
Author(s):  
Peng Wan Chen ◽  
Xiang Gao ◽  
Jian Jun Liu ◽  
Hao Yin ◽  
Feng Lei Huang

Different TiO2 precursors were impacted by detonation-driven high velocity flyers to obtain high-pressure phases of titania under instantaneous high temperature and pressure. The factors affecting high-pressure phase synthesis such as loading conditions and titanium dioxide precursors were also studied. The structure and phase composition of the shocked samples are determined by X-ray diffraction (XRD). The microstructure of TiO2 after shock treatment was observed by transmission electron microscopy (TEM).


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
W. W. Barker ◽  
W. E. Rigsby ◽  
V. J. Hurst ◽  
W. J. Humphreys

Experimental clay mineral-organic molecule complexes long have been known and some of them have been extensively studied by X-ray diffraction methods. The organic molecules are adsorbed onto the surfaces of the clay minerals, or intercalated between the silicate layers. Natural organo-clays also are widely recognized but generally have not been well characterized. Widely used techniques for clay mineral identification involve treatment of the sample with H2 O2 or other oxidant to destroy any associated organics. This generally simplifies and intensifies the XRD pattern of the clay residue, but helps little with the characterization of the original organoclay. Adequate techniques for the direct observation of synthetic and naturally occurring organoclays are yet to be developed.


2018 ◽  
Vol 2 (1) ◽  
pp. 7
Author(s):  
S Chirino ◽  
Jaime Diaz ◽  
N Monteblanco ◽  
E Valderrama

The synthesis and characterization of Ti and TiN thin films of different thicknesses was carried out on a martensitic stainless steel AISI 410 substrate used for tool manufacturing. The mechanical parameters between the interacting surfaces such as thickness, adhesion and hardness were measured. By means of the scanning electron microscope (SEM) the superficial morphology of the Ti/TiN interface was observed, finding that the growth was of columnar grains and by means of EDAX the existence of titanium was verified.  Using X-ray diffraction (XRD) it was possible to observe the presence of residual stresses (~ -3.1 GPa) due to the different crystalline phases in the coating. Under X-ray photoemission spectroscopy (XPS) it was possible to observe the molecular chemical composition of the coating surface, being Ti-N, Ti-N-O and Ti-O the predominant ones.


2019 ◽  
Vol 9 (01) ◽  
pp. 21-26
Author(s):  
Arif Budiman ◽  
Ayu Apriliani ◽  
Tazyinul Qoriah ◽  
Sandra Megantara

Purpose: To develop glibenclamide-nicotinamide cocrystals with the solvent evaporation method and evaluate their solubility and dissolution properties. Methods: Cocrystals of glibenclamide-nicotinamide (1:2) were prepared with the solvent evaporation method. The prediction of interactive cocrystals was observed using in silico method. The solubility and dissolution were performed as evaluation of cocrystals. The cocrystals also were characterized by differential scanning calorimetry (DSC), infrared spectrophotometry, and powder X-ray diffraction (PXRD). Result: The solubility and dissolution profile of glibenclamide-nicotinamide cocrystal (1:2) increased significantly compared to pure glibenclamide as well as its physical mixture. Characterization of cocrystal glibenclamide-nicotinamide (1:2) including infrared Fourier transform, DSC, and PXRD, indicated the formation of a new solid crystal phase differing from glibenclamide and nicotinamide. Conclusion: The confirmation of cocrystal glibenclamide-nicotinamide (1:2) indicated the formation of new solid crystalline phases that differ from pure glibenclamide and its physical mixture


Sign in / Sign up

Export Citation Format

Share Document