scholarly journals Renewable Energy for Environmental Protection: Life Cycle Inventory of Nigeria’s Palm Oil Production

2021 ◽  
Author(s):  
Kelechi E Anyaoha ◽  
Lulu Zhang

Energy consumption and associated greenhouse gas (GHG) emissions will increase significantly in the developing world. Scaling up bioenergy use and reducing GHG emissions is vital to achieving the Nationally Determined Contributions and advance the greener economy. This study explored the life cycle inventories of Nigeria’s palm oil processors towards supporting technology advancement and renewable energy transition in the African oil palm industry. We compiled a gate-to-gate life cycle inventory of large-scale, semi-mechanized, and smallholder processors of oil palm fresh fruit bunch in Nigeria. The inventory includes materials and energy inputs to the system and outputs and emissions to the environment. The inputs are diesel, water, electricity, empty fruit bunch, palm kernel shell and mesocarp fibre for a functional unit of 1 tonne of fresh fruit bunch while the outputs include crude palm oil, palm kernel, and all emissions to air and soil. Carbon dioxide (CO2) and dinitrogen oxide (N2O) emissions were 47% and 73% more in the smallholder mills than in the large-scale mills, respectively. The semi-mechanized mills produced 73% more N2O than the large-scale mills. In contrast, large-scale mills emit 71% more methane (CH4) than smallholder and semi-mechanized mills. The study reveals critical hot spots of GHG emissions in Nigeria’s oil palm industry, including CO2, N2O, and CH4 from the smallholder, semi-mechanized, and large-scale processors, respectively. These findings will contribute to supporting policymaking, technology advancement, and promoting the use of bioenergy within and outside the industry as an essential strategy for mitigating climate change.

2021 ◽  
Author(s):  
Kelechi E Anyaoha ◽  
Lulu Zhang

Oil palm is expected to continue its dominance of global oil production, trade, and consumption. Nigeria will continue to play a dominate role in oil palm industry particularly on production and consumption. One of the biggest challenges to agricultural productivities is the need to reduce the environmental impacts and improves circularity in the operations. This study investigated the environmental impacts of different palm oil processors in Nigeria using life cycle assessment approach. The study covers the reception and processing of fresh fruit bunch (FFB) to palm oil. The inputs include generated empty fruit bunch, mesocarp fibre, palm kernel shell, palm oil mill effluent, diesel, and water and all outputs to the environment for a functional unit of 1 tonne of FFB. The large-scale processor performs worse than the semi-mechanised and smallholder processors in terms of climate change with 468 kg CO2-eq per tonne of FFB and better in the other impact categories. In large-scale mill, the contribution to climate change was reduced by 75% when the raw POME was used in composting EFB. Similarly, the contribution to climate change was decreased by 44% when biogas from POME substituted diesel in the semi-mechanised and smallholder mills. Concerted efforts by regulators are needed to ensure that stakeholders take steps towards improving management practices in the industry. Particularly on the generation and reuse of biomass and POME. This study will be very useful particularly on the contributions to climate change by Nigeria’s oil palm industry and other parts of sub-Saharan Africa.


Author(s):  
Noraishah Shafiqah Yacob ◽  
Hassan Mohamed ◽  
Abd Halim Shamsuddin

Renewable energy is a reliable solution for addressing global warming and fossil fuel depletion issues. Due to the abundance of biomass resources, such as palm oil wastes, which are currently underutilised, this is an opportunity for Malaysia to seize and implement this renewable energy solution for power generation. Palm oil mill wastes, such as empty fruit bunch (EFB), palm mesocarp fibre (PMF), and palm kernel shell (PKS), are worth to be investigated as a possible feedstock for combustion in thermal power plants. Co-combustion or co-firing of biomass in coal-fired thermal power plants offers a significant potential to reduce harmful emissions and represents a low cost and low-risk method. This paper aims to review and compare existing biomass thermal combustion technologies globally to evaluate the potential of utilising palm oil waste with coal. Before undergoing various pretreatment options, it is necessary to understand the feedstock characteristics for thermal power plant combustion. It is recommended to implement the combustion of palm oil wastes with coal in Malaysia to reduce harmful pollution. Based on the findings, Malaysia appears to be on the right track to optimise the use of palm oil wastes for electricity generation. The enhanced usage will reduce the negative impact of greenhouse gas (GHG) emissions.


2021 ◽  
Vol 1195 (1) ◽  
pp. 012005
Author(s):  
Erdiwansyah ◽  
Mahidin ◽  
Husni Husin ◽  
Nasaruddin ◽  
Muhibbuddin ◽  
...  

Abstract Biomass from palm oil is a renewable energy source that can be utilized and has very promising availability. Biomass energy is a renewable and sustainable energy that can replace conventional (fossil) fuels. The main objective of the experiment in this article is to analyze the combustion temperature, emissions, and efficiency of palm oil biomass fuel to use and applied in rural/remote areas. The palm oil biomass used in this study is palm kernel shells, empty fruit bunches, oil palm midrib, and oil palm fibers. The experiments in the research carried out in a fluidized-bed combustion chamber designed explicitly with capacities of up to 5 kg of biomass. The results of operations on fluidized-bed when the valve is open 100%, 75%, and 50% with overall palm oil biomass show a high combustion temperature. The highest combustion temperature was recorded in the TC test for 100% open valves with 3 kg biomass of 943°C. While the minimum combustion temperature obtained on TF2 at 50% open valve with 1 kg biomass of 619°C, overall combustion temperatures in this experiment showed high results. The maximum emission for O2 is 20.4% which is obtained at 50% open valve, while for CO2 the maximum emission is produced when 100% open valve is 19.9% with a biomass weight of 1 kg and 3 kg, respectively. The yield for maximum combustion efficiency when using 1 kg of biomass recorded at 50% open valve was 94.9%. While the minimum efficiency of 87.7% is obtained when the valve is 100% open with biomass of 2 kg. As the biomass fuel used in fluidized-bed increases, the combustion temperature also increases significantly.


Agrotek ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Josina Waromi

<p><em>Palm Oil is versatile crops. In general, most of products coming from fresh fruit bunch (FFB) producing crude palm oil (CPO) and crude palm kernel oil (CPKO) are used for food, oleo chemical and biofuel. Besides that, its leaves and empty fruit bunch can be used for natural fertilizer, pulp and paper. Palm oil crops also give benefits for countries that produce palm oil crops. For example, in Indonesia, palm oil crops not only have numerous contributions to gross domestic products (GDP) but also it creates employment, increases income level of farmer� and provides basic amenities and infrastructure in rural area where the oil palm plantation there.�</em><em>However, palm oil crops have some negative impacts for environment. The expanse of oil palm plant


2020 ◽  
Vol 11 (3) ◽  
pp. 10148-10160

Oil palm (Elaeis guineensis Jacq) is a part of the family of Arecaceae, which originated from West Africa. Oil palm can be grown in the tropics of Asia, Africa, and Central and South America. Palm oil produces two types of oil: Crude Palm Oil (CPO) and Palm Kernel Oil (PKO). Indonesia’s CPO production reaches 49 million tonnes in 2020. This production produces around 35-40% of waste. Fresh Fruit Bunch (FFB) is extracted into Crude Palm Oil (CPO) and Palm Kernel Oil (PKO), which produce waste such as Palm Oil Mill Effluent (POME), Empty Fruit Bunch (EFB), Mesocarp Fiber (MF), Palm Kernel Shell (PKS) and Palm Kernel Meal (PKM). Palm oil production increases every year, which causes the waste from the industry to increase too. Palm oil waste still has chemical content that is good enough to be utilized. The study was conducted online at Google Scholar and PubMed by reviewing literature from domestic and international journals and research reports. The results showed that each waste contains different content, including carbohydrates, protein, fat, lignin, cellulose, mannose, and others. This waste has also been used in various fields. This waste has also been used for livestock, fuel, and raw materials.


Fuel ◽  
2021 ◽  
Vol 305 ◽  
pp. 121569
Author(s):  
Chao Jin ◽  
Xin Liu ◽  
Tianyun Sun ◽  
Jeffrey Dankwa Ampah ◽  
Zhenlong Geng ◽  
...  

2021 ◽  
Author(s):  
Nick Pasiecznik

Abstract E. guineensis, the oil palm or African oil palm, is native to equatorial Africa, although the only other species in the genus (E. oleifera) is indigenous to South and Central America. E. guineensis, however, is the major economic species: fruits of E. oleifera have a much lower oil content and are used only locally (Westphal and Jansen, 1989). However, E. guineensis was introduced into South America during the time of the slave trade, and naturalized groves are reported in coastal areas of Brazil near Bélem. In the mid-1800s it was introduced to South-East Asia via the Botanic Gardens in Bogor, Indonesia. The first oil-palm estates in Sumatra (since 1911) and Malaysia (since 1917) used plant material from second- and third-generation descendants of the original Bogor palms, from which one of the breeding populations, the Deli Dura, is derived (Westphal and Jansen, 1989). After soyabean, E. guineensis is the second most important crop worldwide for the supply of edible vegetable oil. Palm oil kernel, for example, is a major agricultural export from Malaysia, and South-East Asia is the main area of production.E. guineensis yields two types of oil: palm oil from the fleshy mesocarp, and palm-kernel oil from the kernel, in a volume ratio 10:1. Most palm oil is used in food preparation (margarines, and industrial frying oils used to prepare snack foods, etc.). Palm-kernel oil is similar in composition and properties to coconut oil, and is used in confectionery, where its higher melting point is particularly useful. It is also used in the manufacture of lubricants, plastics, cosmetics and soaps. The oil palm is a monoecious, erect, single-stemmed tree usually 20-30 m high. The root system is shallow and adventitious, forming a dense mat in the top 35 cm of the soil. The main stem is cylindrical, up to 75 cm diameter. E. guineensis palm fronds are not as suitable for thatching as other palm species, as the leaflets attach to the rachis at two angles. The oil palm is indigenous to the lowland humid tropics, and thrives on a good moisture supply and relatively open conditions. It can tolerate fluctuating water-tables with periods of standing water, although continuously flooded conditions are unsuitable. Sites often selected as suitable for oil palm are swamps, riverbanks, or sites considered too moist for tropical rain forest trees. Rainfall is often the major factor limiting production in plantations: highest yields occur where rainfall is evenly distributed throughout the year, with an optimum of 150 mm per month (Westphal and Jansen, 1989). Oil palms can grow on a variety of soil types, from sandy soils to lateritic red and yellow podzols, young volcanic soils, alluvial clays and peat soils; water-holding capacity appears to be the most important soil criterion. It is a demanding crop in terms of soil nutrients. The oil palm also has potential for incorporation into agroforestry practices. Traditional oil palm management in some areas of West Africa often incorporated both pure oil palm groves (perhaps selectively retained), scattered oil palms within temporary fields, and unexploited oil palms in mixed forest (Gupta, 1993). Harvesting of fruits usually starts about 2½ years after field planting; bunches ripen throughout the year and so harvesting usually takes place at intervals of 2 to 3 weeks in any particular area. Because oil palm is so responsive to environmental conditions, yields may vary greatly. However, over the lifetime of a palm tree, yields generally rise to a maximum in the first 6-8 years (after field planting), and will subsequently decline slowly. In Malaysia and Sumatra, well-managed plantations yield between 24 and 32 tonnes/hectare of fruit bunches; the oil yield from this will be between 4.8 and 7 tonnes/hectare. Oil palm plantations are often regarded as a better use of the land than annual food crops in humid tropical areas where soils are prone to leaching: the plantations provide continuous ground cover, and the palm canopy helps protect against soil erosion. Oil palm stems are increasingly used as a raw material for paper and composite board production. This area has big prospects in wood-based industries. It is recommended that more research is undertaken into the properties and utilization. Propagation techniques, the management of pests and diseases, and genetic resources are other areas in which studies could usefully be undertaken.


Sign in / Sign up

Export Citation Format

Share Document