Black Hole Universe: a grand cosmic recycler and Big Bang generator?

2019 ◽  
Author(s):  
Matheus Pereira Lobo

We propose the discussion of a highly speculative idea for the scenario where black hole collisions and their subsequent increase in sizes exceed the expansion of the universe.

2019 ◽  
Vol 127 ◽  
pp. 02009
Author(s):  
Boris Shevtsov

Nonlinear oscillations in the dynamic system of gravitational and material fields are considered. The problems of singularities and caustics in gravity, expansion and baryon asymmetry of the Universe, wave prohibition of collapse into black holes, and failure of the Big Bang concept are discussed. It is assumed that the effects of the expansion of the Universe are coupling with the reverse collapse of dark matter. This hypothesis is used to substantiate the vortex and fractal structures in the distribution of matter. A system of equations is proposed for describing turbulent and fluctuation processes in gravitational and material fields. Estimates of the di usion parameters of such a system are made in comparison with the gravitational constant.


2000 ◽  
Vol 09 (06) ◽  
pp. 705-710 ◽  
Author(s):  
XIN HE MENG ◽  
BIN WANG ◽  
S. FENG

Measurements of the distances to SNe Ia have produced strong evidence that the expansion of the Universe is really accelarating, implying the existence of a nearly uniform component of dark energy with the simplest explanation as a cosmological constant. In this paper a small changing cosmological term is proposed, which is a function of a slow-rolling scalar field, by which the de Sitter primordial black holes' properties, for both charged and uncharged cases, are carefully examined and the relationship between the black hole formation and the energy transfer of the inflaton is eluciated. The criterion for primordial black hole formation is given.


2015 ◽  
Vol 3 (1) ◽  
pp. 40
Author(s):  
Hasmukh Tank

<p>Astronomical observations of the cosmological red-shift are currently interpreted in terms of ‘expansion of universe’ and ‘accelerated-expansion of the universe’, at the rate of <em>H<sub>0</sub> c</em>; here <em>H<sub>0</sub></em> is Hubble’s constant, and c is the speed of light. Whereas a straight-forward derivation presented here suggests that: rather it is the photon which is decelerating, at the rate of <em>H<sub>0</sub> c</em>. Such a deceleration of photons can be caused by virtual electrons, positrons and pi-mesons, contained in the extra galactic quantum vacuum, because: they do have gravitational-acceleration of the same order as <em>H<sub>0</sub> c</em> at their “surfaces”; or by decay of a photon into a lighter photon and a particle of mass <em>h H<sub>0</sub> / c<sup>2</sup></em>. Tired-light interpretations of the cosmological red-shift’ were so far considered as not compatible with the observations of ‘time-dilation of super-novae light-curves’; so in a paper titled: “Wave-theoretical insight into the relativistic ‘length-contraction’ and ‘time-dilation of super-novae light-curves’” (Tank, Hasmukh K. 2013), it has been already shown that any mechanism which can cause ‘cosmological red-shift’ will also cause ‘time-dilation of super-novae light-curves’.  Therefore, we now need not to remain confined to the Big-Bang model of cosmology.</p>


1977 ◽  
Vol 3 (2) ◽  
pp. 100-101 ◽  
Author(s):  
R. D. Brown

There have been a number of attempts made in the last decade or two to observe deuterium in parts of the universe other than here in Earth. It is of interest merely to detect deuterium elsewhere just as it is to detect the occurrence of any nuclide. However in the case of deuterium there is a special interest because in big-bang cosmologies the great majority of deuterium in the universe is considered to have been formed in the initial fireball (Wagoner, 1973). Any observation of the present abundance of deuterium thus might give information about the very early stages of the creation of the universe. Detailed studies of nucleosynthesis during the early expansion of hot big-bang universes have however indicated a particular feature of deuterium production. (Fig. 1) The mass fraction produced X(D) is a very sensitive function of the size of the universe, as measured say by the present baryon density ϱb. Other nuclides that are mainly produced in the early expansion, such as 4He, have mass fractions less dependent on ϱb. Thus if we adopt the big-bang model for our universe we can determine ϱb from observations of X(D). Apart from any intrinsic interest in the present density of the’universe, there is considerable interest in whether the value is great enough for the present expansion to halt and go over to a collapse — or so small that the expansion of the universe will go on forever.


1986 ◽  
Vol 7 ◽  
pp. 27-38 ◽  
Author(s):  
Vera C. Rubin

Thirty years ago, observational cosmology consisted of the search for two numbers: Ho, the rate of expansion of the universe at the position of the Galaxy; and qo, the deceleration parameter. Twenty years ago, the discovery of the relic radiation from the Big Bang produced another number, 3oK. But it is the past decade which has seen the enormous development in both observational and theoretical cosmology. The universe is known to be immeasurably richer and more varied than we had thought. There is growing acceptance of a universe in which most of the matter is not luminous. Nature has played a trick on astronomers, for we thought we were studying the universe. We now know that we were studying only the small fraction of it that is luminous. I suspect that this talk this evening is the first IAU Discourse devoted to something that astronomers cannot see at any wavelength: Dark Matter in the Universe.


2012 ◽  
Vol 21 (11) ◽  
pp. 1242022 ◽  
Author(s):  
HOMER G. ELLIS

Albert Einstein's real "biggest blunder" was not the 1917 introduction into his gravitational field equations of a cosmological constant term Λ, rather was his failure in 1916 to distinguish between the entirely different concepts of active gravitational mass and passive gravitational mass. Had he made the distinction, and followed David Hilbert's lead in deriving field equations from a variational principle, he might have discovered a true (not a cut and paste) Einstein–Rosen bridge and a cosmological model that would have allowed him to predict, long before such phenomena were imagined by others, inflation, a big bounce (not a big bang), an accelerating expansion of the universe, dark matter, and the existence of cosmic voids, walls, filaments and nodes.


2015 ◽  
Vol 7 (6) ◽  
pp. 56
Author(s):  
Zifeng Li

<p class="1Body">Analyzes the Big Bang theory, recession of galaxies, Hubble's law, multi-dimensional space, curved space and black hole in modern cosmology and points out that these six theories are all baseless and irrational, contrary to classical science. Promotes the use of plain view of the universe - the materialist view of space–time-mass-energy to study the universe. The observations and understanding of the universe are very limited now. Cosmology should be realistic, not based on irrational models.</p>


2014 ◽  
Vol 29 (28) ◽  
pp. 1450142 ◽  
Author(s):  
Metin Arık ◽  
Yorgo Şenikoğlu

We propose and analyze a new metric that has two conformal factors a(t) and b(t) that combine the expansion of the universe and its effects on the spatial and temporal part of the Schwarzschild metric in isotropic coordinates. We present the solutions, their descriptions and we comment on their shortcomings. In the spatially flat case of an expanding universe, we derive from the proposed metric the special solutions of the field equations for the dust approximation and the McVittie metric. We show that the presence of a black hole does not modify the a(t)αt2/3 law for dust and H = const. for dark energy.


Author(s):  
Jian-Bin Bao ◽  
Nicholas P. Bao

There are unsolved problems related to inflation, gravity, dark matter, dark energy, missing antimatter, and the birth of the universe. Some of them can be better answered by assuming the existence of aether and hypoatoms. Both were created during the inflation in the very early universe. While aether forms vacuum, hypoatoms, composed of both matter and antimatter and believed to be neutrinos, form all observable matter. In vacuum, aether exists between the particle-antiparticle dark matter form and the dark energy form in a dynamic equilibrium: A + A-bar = gamma + gamma. The same reaction stabilizes hypoatoms and generates a 3-dimensional sink flow of aether that causes gravity. Based on the hypoatom structure, the singularity does not exist inside a black hole; the core of the black hole is a hypoatom star or neutrino star. By gaining enough mass, ca. 3 X 1022 Msun, to exceed neutrino degeneracy pressure, the black hole collapses or annihilates into the singularity, thus turning itself into a white hole or a Big Bang. The universe is anisotropic and nonhomogeneous. Its center, or where the Big Bang happened, is at about 0.671 times the radius of the observable universe at the Galactic coordinates (l, b) ~ (286&deg;, -42&deg;). If we look from the Earth to the center of the universe, the universe is rotating clockwise.


2021 ◽  
Author(s):  
Carlos A. Melendres

Abstract We present a physico-chemical approach towards understanding the mysteries associated with the Inflationary Big Bang model of Cosmic evolution based on a theory that space consists of energy quanta. We use thermodynamics to elucidate the expansion of the universe, its composition, and the nature of dark energy and dark matter. The universe started from an atomic size volume of space quanta at very high temperature. Upon expansion and cooling, phase transitions resulted in the formation of fundamental particles, and matter which grow into stars, galaxies, and clusters due to gravity. From cooling data on the universe, we constructed a thermodynamic phase diagram of composition of the universe, from which we obtained a correlation between dark energy and the energy of space. Using Friedmann’s equations, our Quantum Space model fitted well the WMAP data on cosmic composition with an equation of state parameter, w= -0.7. The expansion of the universe was adiabatic and decelerating during the first 7 billion years after the Big Bang. It accelerated due to the dominance of dark energy at 7.25 x 109 years, in good agreement with BOSS measurements. Dark Matter is identified as a plasma form of matter similar to that which existed before recombination and during reionization.


Sign in / Sign up

Export Citation Format

Share Document