Predictive Feedback Routing Control Strategy for Freeway Network Traffic

Author(s):  
Yibing Wang ◽  
Markos Papageorgiou ◽  
Albert Messmer

Available routing strategies for freeway networks may be classified as feedback and iterative strategies. Feedback strategies base their routing decisions on real-time measurable or estimable information only, via employment of simple regulators, while iterative strategies run a freeway network model repeatedly to achieve exact user equilibrium conditions over a future time horizon. A predictive feedback routing control strategy was developed with the aim of incorporating the advantages of both classes of strategies on the one hand and attenuating their disadvantages on the other hand. The new strategy runs a mathematical model only once at each time step and bases its routing decisions on the predicted instead of the currently prevailing traffic conditions. The investigations indicate that satisfactory routing results are achieved by use of this strategy. The corresponding performance evaluation was conducted in detail by comparison with the feedback and iterative strategies.

2011 ◽  
Vol 66-68 ◽  
pp. 268-272
Author(s):  
Gui Yun Yan ◽  
Zheng Zhang

This paper presents a predictive control strategy for seismic protection of a benchmark cable-stayed bridge with consideration of multiple-support excitations. In this active control strategy, a multi-step predictive model is built to estimate the seismic dynamics of cable-stayed bridge and the effects of some complicated factors such as time-varying, model mismatching, disturbances and uncertainty of controlled system, are taken into account by the prediction error feedback in the multi-step predictive model. The prediction error is that the actual system output is compared to the model prediction at each time step. Numerical simulation is carried out for analyzing the seismic responses of the controlled cable-stayed bridge and the results show that the developed predictive control strategy can reduce the seismic response of benchmark cable-stayed bridge efficiently.


2012 ◽  
Vol 36 (1) ◽  
pp. 5-8 ◽  
Author(s):  
Gargi Pal ◽  
Pranabes Bhattacharyya ◽  
Arunima Medda ◽  
Asish R. Das

2021 ◽  
Vol 31 (1) ◽  
pp. 1-28

The article discusses the problem of isolation and draws a parallel between two different approaches to it - Michel Foucault’s archeology of power and Sigmund Freud’s psychoanalysis. Foucault’s perspective is exemplified by his critique of the strategies of power as they were applied to the epidemics of leprosy and bubonic plague. For leprosy there was an undifferentiated exclusionary space, while the the plague brought about a segmented space for confinement. The passage from the one strategy to the other marks the development of the disciplinary model of power: leper colonies are transformed into prisons and psychiatric wards. Freud’s approach is examined in his treatment of the Rat Man, the patient whose analysis prompted Freud to formulate his theory of obsessional neurosis, or obsessive-compulsive disorder (OCD). The article emphasizes the relevance of the problem of OCD to the COVID-19 pandemic of 2020. The traditional strategy of power applied to leprosy was isolation by means of exile from towns, while for the plague isolation meant shutting towns down with their inhabitants each in their own place as if imprisoned. COVID-19 brought about a new strategy of self-isolation which entails creating physical and psychological barriers together with social distancing. Obsessional neurosis is evolving from an individual pathology into a kind of collective one: epidemiology influences mentality. In conclusion, the article takes up two literary examples - Roman Mikhailov’s text “The Wrong Side of a Rat,” and Varlam Shalamov’s story “Lepers,” from the Kolyma Stories collection - in which breaking out of isolation, disease and infection are presented as alternative affective experiences.


RBRH ◽  
2018 ◽  
Vol 23 (0) ◽  
Author(s):  
Alice César Fassoni-Andrade ◽  
Fernando Mainardi Fan ◽  
Walter Collischonn ◽  
Artur César Fassoni ◽  
Rodrigo Cauduro Dias de Paiva

ABSTRACT The one-dimensional flow routing inertial model, formulated as an explicit solution, has advantages over other explicit models used in hydrological models that simplify the Saint-Venant equations. The main advantage is a simple formulation with good results. However, the inertial model is restricted to a small time step to avoid numerical instability. This paper proposes six numerical schemes that modify the one-dimensional inertial model in order to increase the numerical stability of the solution. The proposed numerical schemes were compared to the original scheme in four situations of river’s slope (normal, low, high and very high) and in two situations where the river is subject to downstream effects (dam backwater and tides). The results are discussed in terms of stability, peak flow, processing time, volume conservation error and RMSE (Root Mean Square Error). In general, the schemes showed improvement relative to each type of application. In particular, the numerical scheme here called Prog Q(k+1)xQ(k+1) stood out presenting advantages with greater numerical stability in relation to the original scheme. However, this scheme was not successful in the tide simulation situation. In addition, it was observed that the inclusion of the hydraulic radius calculation without simplification in the numerical schemes improved the results without increasing the computational time.


Parasite ◽  
2018 ◽  
Vol 25 ◽  
pp. 54 ◽  
Author(s):  
Chunyan Qian ◽  
Yuefeng Zhang ◽  
Xinyan Zhang ◽  
Chao Yuan ◽  
Zhichao Gao ◽  
...  

Since 2004, the national schistosomiasis control strategy in China has shifted from the morbidity control strategy (conventional strategy) to an integrated strategy (new strategy). We investigated the effectiveness of the new strategy and compared it against the conventional strategy. We retrieved from electronic databases the literature regarding the new strategy published from 2000 to 2017. The effect of the new or conventional strategy on infection by Schistosoma japonicum of humans and snails (Oncomelania hupensis) was evaluated with pooled log relative risk (logRR). A total of only eight eligible publications were included in the final meta-analysis. The results showed that implementation of the new strategy reduced the infection risk by 3–4 times relative to the conventional strategy. More specifically, the conventional strategy caused a reduction in both human (logRR = 0.56, 95% CI: 0.12–0.99) and snail infections (logRR = 0.34, 95% CI: −0.69–1.37), while the new strategy also significantly reduced both human (logRR = 1.89, 95% CI: 1.33–2.46) and snail infections (logRR = 1.61, 95% CI: 1.06–2.15). In contrast to the conventional strategy, the new strategy appeared more effective to control both human (logRR difference = 1.32, 95% CI: 0.78–1.86) and snail infections (logRR difference = 1.53, 95% CI: 0.76–2.31). Our data demonstrate that the new integrated strategy is highly effective to control the transmission of S. japonicum in China, and this strategy is recommended for schistosomiasis elimination in other affected regions across the world, with adaptation to local conditions.


2021 ◽  
Author(s):  
Edwin Kipchirchir ◽  
Manh Hung Do ◽  
Jackson Githu Njiri ◽  
Dirk Söffker

Abstract. Variability of wind profiles in both space and time is responsible for fatigue loading in wind turbine components. Advanced control methods for mitigating structural loading in these components have been proposed in previous works. These also incorporate other objectives like speed and power regulation for above-rated wind speed operation. In recent years, lifetime control and extension strategies have been proposed to guaranty power supply and operational reliability of wind turbines. These control strategies typically rely on a fatigue load evaluation criteria to determine the consumed lifetime of these components, subsequently varying the control set-point to guaranty a desired lifetime of the components. Most of these methods focus on controlling the lifetime of specific structural components of a wind turbine, typically the rotor blade or tower. Additionally, controllers are often designed to be valid about specific operating points, hence exhibit deteriorating performance in varying operating conditions. Therefore, they are not able to guaranty a desired lifetime in varying wind conditions. In this paper an adaptive lifetime control strategy is proposed for controlled ageing of rotor blades to guaranty a desired lifetime, while considering damage accumulation level in the tower. The method relies on an online structural health monitoring system to vary the lifetime controller gains based on a State of Health (SoH) measure by considering the desired lifetime at every time-step. For demonstration, a 1.5 MW National Renewable Energy Laboratory (NREL) reference wind turbine is used. The proposed adaptive lifetime controller regulates structural loading in the rotor blades to guaranty a predefined damage level at the desired lifetime without sacrificing on the speed regulation performance of the wind turbine. Additionally, significant reduction in the tower fatigue damage is observed.


Transport ◽  
2010 ◽  
Vol 25 (3) ◽  
pp. 307-313
Author(s):  
Shu-Guang Li ◽  
Qing-Hua Zhou

The analysis of single vehicle type dynamic marginal cost is extended to multiple vehicle type dynamic one based on time‐dependent multiple vehicle type queue analysis at a bottleneck. First, a dynamic link model to rep‐ resent the interactions between cars and trucks is provided. Then, the analytic expression of a multiple vehicle type dynamic marginal cost function considering departure time choices is deduced under congested and un‐congested conditions and consequently, a dynamic toll function is given. A heuristic algorithm is introduced to solve multiple vehicle type dynamic queues and toll under system optimum and user equilibrium conditions taking into account traveler's departure time. A numerical example shows that a dynamic congestion toll can diminish queues and improve system conditions when traffic demand is not changed.


Author(s):  
Doaa Ezzat ◽  
Safaa El-Sayed Amin ◽  
Howida A. Shedeed ◽  
Mohamed F. Tolba

Nanorobots were proposed to deliver drugs directly into cancer cells to destroy only these cells without harming the surrounding cells. During their journey, the nanorobots may encounter some obstacles such as blood cells which may be resistant to their movement. So, it is necessary to avoid collisions with these obstacles to achieve their goal. This study proposes a new strategy for controlling the nanorobots movement in human body to reach cancer cells. This proposed strategy uses an efficient algorithm based on fuzzy logic for dynamic obstacle avoidance. Also, this proposed strategy uses the directed particle swarm optimization (DPSO) algorithm for delivering nanorobots to cancer cells. Simulation experiments have proved that the proposed control strategy can efficiently deliver nanorobots to their target and also avoid collisions with dynamic obstacles which move in the same direction of the nanorobots or across their direction.


2021 ◽  
Author(s):  
Lele Shu ◽  
Hao Chen ◽  
Xianhong Meng

<p>The hydrologic model is ideal for experimenting and understanding the water movement and storage in a watershed from the upper mountain to the river outlet. Nevertheless, the model's performance, suitability, and data availability are the primary challenge for a modeler. This study introduces the Simulator for Hydrologic Unstructured Domains (SHUD), a surface-subsurface integrated hydrological model using the semi-discrete Finite Volume Method. Though the SHUD applies a fine time-step (in minutes) and flexible spatial domain decomposition (m to km) to simulate the fully coupled surface-subsurface hydrology, the model can solve the watershed-scale problem efficiently and dependably. Plenty of applications in the USA proved the SHUD model's performance and suitability in the humid and data-rich watersheds.  </p><p>In this research, we demonstrate the SHUD model deployment in two data-scarce watersheds in the northwest of China with global datasets, validate the simulations against local observational data, and assess the SHUD model's efficiency and suitability.  The one is the Upstream Heihe River (UHR), which is a typical semi-arid mountainous watershed.  The other is Yellow River Source (YRS), the upstream of Yellow River, contributing more than 50% of total discharge. The results, figures, and analysis based on SHUD simulations under global datasets highlight the model's suitability and efficiency in data-limited watersheds, even ungaged ones. The SHUD model is a useful modeling platform for hydrology and water-related coupling studies.</p>


Sign in / Sign up

Export Citation Format

Share Document