numerical stability
Recently Published Documents


TOTAL DOCUMENTS

805
(FIVE YEARS 114)

H-INDEX

40
(FIVE YEARS 3)

Author(s):  
Michael Günther ◽  
Adrian Sandu

AbstractMany complex applications require the solution of initial-value problems where some components change fast, while others vary slowly. Multirate schemes apply different step sizes to resolve different components of the system, according to their dynamics, in order to achieve increased computational efficiency. The stiff components of the system, fast or slow, are best discretized with implicit base methods in order to ensure numerical stability. To this end, linearly implicit methods are particularly attractive as they solve only linear systems of equations at each step. This paper develops the Multirate GARK-ROS/ROW (MR-GARK-ROS/ROW) framework for linearly-implicit multirate time integration. The order conditions theory considers both exact and approximative Jacobians. The effectiveness of implicit multirate methods depends on the coupling between the slow and fast computations; an array of efficient coupling strategies and the resulting numerical schemes are analyzed. Multirate infinitesimal step linearly-implicit methods, that allow arbitrarily small micro-steps and offer extreme computational flexibility, are constructed. The new unifying framework includes existing multirate Rosenbrock(-W) methods as particular cases, and opens the possibility to develop new classes of highly effective linearly implicit multirate integrators.


2021 ◽  
pp. 193-208
Author(s):  
Paramanand Vivekanand Nandihal ◽  
Ashish Mohan ◽  
Subir Kumar Saha
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7023
Author(s):  
Ouk Choi ◽  
Wonjun Hwang

In the last stage of colored point cloud registration, depth measurement errors hinder the achievement of accurate and visually plausible alignments. Recently, an algorithm has been proposed to extend the Iterative Closest Point (ICP) algorithm to refine the measured depth values instead of the pose between point clouds. However, the algorithm suffers from numerical instability, so a postprocessing step is needed to restrict erroneous output depth values. In this paper, we present a new algorithm with improved numerical stability. Unlike the previous algorithm heavily relying on point-to-plane distances, our algorithm constructs a cost function based on an adaptive combination of two different projected distances to prevent numerical instability. We address the problem of registering a source point cloud to the union of the source and reference point clouds. This extension allows all source points to be processed in a unified filtering framework, irrespective of the existence of their corresponding points in the reference point cloud. The extension also improves the numerical stability of using the point-to-plane distances. The experiments show that the proposed algorithm improves the registration accuracy and provides high-quality alignments of colored point clouds.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2463
Author(s):  
Aleksandra Tutueva ◽  
Denis Butusov

The increasing complexity of advanced devices and systems increases the scale of mathematical models used in computer simulations. Multiparametric analysis and study on long-term time intervals of large-scale systems are computationally expensive. Therefore, efficient numerical methods are required to reduce time costs. Recently, semi-explicit and semi-implicit Adams–Bashforth–Moulton methods have been proposed, showing great computational efficiency in low-dimensional systems simulation. In this study, we examine the numerical stability of these methods by plotting stability regions. We explicitly show that semi-explicit methods possess higher numerical stability than the conventional predictor–corrector algorithms. The second contribution of the reported research is a novel algorithm to generate an optimized finite-difference scheme of semi-explicit and semi-implicit Adams–Bashforth–Moulton methods without redundant computation of predicted values that are not used for correction. The experimental part of the study includes the numerical simulation of the three-body problem and a network of coupled oscillators with a fixed and variable integration step and finely confirms the theoretical findings.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2198
Author(s):  
Nikolaj Ezhov ◽  
Frank Neitzel ◽  
Svetozar Petrovic

In a series of three articles, spline approximation is presented from a geodetic point of view. In part 1, an introduction to spline approximation of 2D curves was given and the basic methodology of spline approximation was demonstrated using splines constructed from ordinary polynomials. In this article (part 2), the notion of B-spline is explained by means of the transition from a representation of a polynomial in the monomial basis (ordinary polynomial) to the Lagrangian form, and from it to the Bernstein form, which finally yields the B-spline representation. Moreover, the direct relation between the B-spline parameters and the parameters of a polynomial in the monomial basis is derived. The numerical stability of the spline approximation approaches discussed in part 1 and in this paper, as well as the potential of splines in deformation detection, will be investigated on numerical examples in the forthcoming part 3.


2021 ◽  
Author(s):  
Alexander Robinson ◽  
Daniel Goldberg ◽  
William H. Lipscomb

Abstract. In the last decade, the number of ice-sheet models has increased substantially, in line with the growth of the glaciological community. These models use solvers based on different approximations of ice dynamics. In particular, several depth-integrated dynamics approximations have emerged as fast solvers capable of resolving the relevant physics of ice sheets at the continen- tal scale. However, the numerical stability of these schemes has not been studied systematically to evaluate their effectiveness in practice. Here we focus on three such solvers, the so-called Hybrid, L1L2-SIA and DIVA solvers, as well as the well-known SIA and SSA solvers as boundary cases. We investigate the numerical stability of these solvers as a function of grid resolution and the state of the ice sheet. Under simplified conditions with constant viscosity, the maximum stable timestep of the Hybrid solver, like the SIA solver, has a quadratic dependence on grid resolution. In contrast, the DIVA solver has a maximum timestep that is independent of resolution, like the SSA solver. Analysis indicates that the L1L2-SIA solver should behave similarly, but in practice, the complexity of its implementation can make it difficult to maintain stability. In realistic simulations of the Greenland ice sheet with a non-linear rheology, the DIVA and SSA solvers maintain superior numerical stability, while the SIA, Hybrid and L1L2-SIA solvers show markedly poorer performance. At a grid resolution of ∆x = 4 km, the DIVA solver runs approximately 15 times faster than the Hybrid and L1L2-SIA solvers. Our analysis shows that as resolution increases, the ice-dynamics solver can act as a bottleneck to model performance. The DIVA solver emerges as a clear outlier in terms of both model performance and its representation of the ice-flow physics itself.


Sign in / Sign up

Export Citation Format

Share Document