Four years of mass balance on Chhota Shigri Glacier, Himachal Pradesh, India, a new benchmark glacier in the western Himalaya
Little is known about the Himalayan glaciers, although they are of particular interest in terms of future water supply, regional climate change and sea-level rise. In 2002, a long-term monitoring programme was started on Chhota Shigri Glacier (32.2° N, 77.5° E; 15.7 km2, 6263–4050 ma.s.l., 9 km long) located in Lahaul and Spiti Valley, Himachal Pradesh, India. This glacier lies in the monsoon–arid transition zone (western Himalaya) which is alternately influenced by Asian monsoon in summer and the mid-latitude westerlies in winter. Here we present the results of a 4 year study of mass balance and surface velocity. Overall specific mass balances are mostly negative during the study period and vary from a minimum value of –1.4 m w.e. in 2002/03 and 2005/06 (equilibrium-line altitude (ELA) ∼5180 m a.s.l.) to a maximum value of +0.1 m w.e. in 2004/05 (ELA 4855 m a.s.l.). Chhota Shigri Glacier seems similar to mid-latitude glaciers, with an ablation season limited to the summer months and a mean vertical gradient of mass balance in the ablation zone (debris-free part) of 0.7mw.e.(100 m)–1, similar to those reported in the Alps. Mass balance is strongly dependent on debris cover, exposure and the shading effect of surrounding steep slopes.