scholarly journals Analysis and Design of Advance Scalable QoS Based Resource Provisioning Framework

2021 ◽  
Author(s):  
Pallavi Shelke ◽  
Rekha Shahapurkar

In today’s growing cloud world, where users are continuously demanding a large number of services or resources at the same time, cloud providers aim to meet their needs while maintaining service quality, an ideal QoS-based resource provisioning is required. In the consideration of the quality-of-service parameters, it is essential to place a greater emphasis on the scalability attribute, which aids in the design of complex resource provisioning frameworks. This study aims to determine how much work is done in light of scalability as the most important QoS attribute. We first conducted a detailed survey on similar QoS-based resource provisioning proposed frameworks/techniques in this article, which discusses QoS parameters with increasingly growing cloud usage expectations. Second, this paper focuses on scalability as the main QOS characteristic, with types, issues, review questions and research gaps discussed in detail, revealing that less work has been performed thus far. We will try to address scalability and resource provisioning problems with our proposed advance scalable QoS-based resource provisioning framework by integrating new modules resource scheduler, load balancer, resource tracker, and cloud user budget tracker in the resource provisioning process. Cloud providers can easily achieve scalability of resources while performing resource provisioning by integrating the working specialty of these sub modules.

T-Comm ◽  
2020 ◽  
Vol 14 (10) ◽  
pp. 33-38
Author(s):  
Alexander S. Antonenko ◽  
◽  
Andrey N. Zemtsov ◽  

This article describes the IPTV system, as well as its implementation methods and related protocols. The concept of IPTV includes both real-time television and recording television, the so-called VoD. In real time, streaming data is sent using only the RTP protocol and in addition to it, the RTSP protocol is used for streaming VoD. In addition, methods for measuring QoS parameters are analyzed, considering practical applications for estimating IPTV traffic parameters. An important feature of providing quality IPTV services is a high level of quality of service. Also, in theory, an Internet connection model with insufficient network bandwidth is considered. The following characteristics are taken into account: bandwidth, one-way delay, inter-packet jitter, the number of lost packets, the number of duplicated packets, packets with errors, and damaged packets. A reordering issue is mentioned. In addition, two important QoS parameters for VoD are measured: START delay and PAUSE / RESUME delays. Service messaging is considered while providing IPTV service. The maximum, average, and minimum values for the network quality of service parameters are found.


Quality of Service refers to the evaluation of the overall performance of a service, such as a telephony or computer network particularly the performance seen by the users of the network. QoS is mostly observed from the subscriber’s side. This includes aspects such as the mobile signal strength available to users and other call avaibility measurements. QoS is normally calculated during signal transmission called KPIs that is connected to the subscriber’s happiness whilst using mobile services. QoS parameters are monitored through RF analysis by Drive Test. Some of these QoS parameters related to call and data are discussed in this paper. These parameters directly or indirectly represents the quality of service provided by the network operators in context of Nepal. This analysis of parameters has helped us identify problems like call performance, slow servicing, least ease of use in a service test area for different service providers in the country.


2015 ◽  
Vol 14 (6) ◽  
pp. 5809-5813
Author(s):  
Abhishek Prabhakar ◽  
Amod Tiwari ◽  
Vinay Kumar Pathak

Wireless security is the prevention of unauthorized access to computers using wireless networks .The trends in wireless networks over the last few years is same as growth of internet. Wireless networks have reduced the human intervention for accessing data at various sites .It is achieved by replacing wired infrastructure with wireless infrastructure. Some of the key challenges in wireless networks are Signal weakening, movement, increase data rate, minimizing size and cost, security of user and QoS (Quality of service) parameters... The goal of this paper is to minimize challenges that are in way of our understanding of wireless network and wireless network performance.


Author(s):  
Simar Preet Singh ◽  
Rajesh Kumar ◽  
Anju Sharma ◽  
S. Raji Reddy ◽  
Priyanka Vashisht

Background: Fog computing paradigm has recently emerged and gained higher attention in present era of Internet of Things. The growth of large number of devices all around, leads to the situation of flow of packets everywhere on the Internet. To overcome this situation and to provide computations at network edge, fog computing is the need of present time that enhances traffic management and avoids critical situations of jam, congestion etc. Methods: For research purposes, there are many methods to implement the scenarios of fog computing i.e. real-time implementation, implementation using emulators, implementation using simulators etc. The present study aims to describe the various simulation and emulation tools for implementing fog computing scenarios. Results: Review shows that iFogSim is the simulator that most of the researchers use in their research work. Among emulators, EmuFog is being used at higher pace than other available emulators. This might be due to ease of implementation and user-friendly nature of these tools and language these tools are based upon. The use of such tools enhance better research experience and leads to improved quality of service parameters (like bandwidth, network, security etc.). Conclusion: There are many fog computing simulators/emulators based on many different platforms that uses different programming languages. The paper concludes that the two main simulation and emulation tools in the area of fog computing are iFogSim and EmuFog. Accessibility of these simulation/emulation tools enhance better research experience and leads to improved quality of service parameters along with the ease of their usage.


Author(s):  
Alexander Olave ◽  
Luis Felipe Valencia ◽  
Juan Carlos Cuéllar

Resumen Voz sobre IP, VoIP, es uno de los servicios con mayor desarrollo bajo plataformas inalámbricas; actualmente se ha iniciado su implementación como alternativa frente a la PSTN (red pública conmutada). El interés por VoIP radica en su relación costo-beneficio, ya que las organizaciones pueden utilizar la misma plataforma de su red de datos para transmitir voz. Por lo anterior, es importante que la organización tenga claro que, para garantizar el buen funcionamiento del servicio de VoIP, es decir para ofrecer QoS, se debe realizar la medición de parámetros que afectan la calidad del servicio como lo son: el retardo, la variación del retardo, el ancho de banda y la pérdida de paquetes. Este artículo analiza y valida los parámetros de QoS necesarios para garantizar el buen funcionamiento del servicio de VoIP sobre la red inalámbrica del campus de la Universidad Icesi. Se realizan pruebas en diferentes escenarios para mostrar que no solo factores como el retardo, y su variación, influyen en la calidad de servicio, sino que también la intensidad de la señal que recibe el cliente desde los puntos de acceso.Palabras Clave: Voz sobre IP, Calidad de servicio, Pérdida de paquetes, Retardo, Variación del Retardo, Intensidad de Señal. Abstract VoIP is one of the services that has been developing over under this type of wireless platforms and today has begun to implement as an alternative to the PSTN (Public Switched Telephone Network). The interest in VoIP is its cost-benefit ratio, and that organizations can use the same platform for their data network to transmit voice. Therefore it is important that the organization is clear that to ensure the smooth operation of the VoIP service, ie provide QoS, you must perform the measurement of parameters that affect the quality of service such as: delay, jitter, bandwidth, packet loss. In this paper we analyze and validate the QoS parameters needed to ensure the smooth operation of VoIP over wireless network on the Icesi University campus. We performed a series of tests in different scenarios to show that not only factors such as delay and jitter influencing the quality of service, but also the client signal strength received from of the AP (Access Point).Keywords: Voice over IP, Quality of service, Packet Loss, Delay, Delay variation, signal intensity.


Sign in / Sign up

Export Citation Format

Share Document