scholarly journals Recent Trends in Design and Development of Nanomaterial-based Aptasensors

2021 ◽  
Vol 11 (6) ◽  
pp. 14057-14077

The past decade has witnessed extensive research in the field of biosensors, where nanoaptasensors achieved widespread interest. Aptamer, the single-stranded DNA or RNA nucleotide, is extensively employed as a bioreceptor due to its stability, ease in a modification that ensures convenient immobilization strategies, reducing the cost of sensor manufacturing. The detection limit and sensitivity were notably improved when modified with nanomaterials such as metal nanoparticles, carbon nanomaterials, graphene, quantum dots, and other nanocomposites. This paper introduces various design strategies for the fabrication of sensors utilizing aptamers and nanomaterials in ¬developing signal-readout mechanism, focusing mainly on the latest research in food, biomedical and environmental applications. Aptasensors that utilize various signal recognition methods such as electrochemistry, colorimetry, luminescence, and fluorescence are highlighted. This review offers a wide range of outlook for future developments of aptamer bioreceptors employing the unique physicochemical nanomaterials as efficient transducers and amplifiers. Furthermore, this review will also provide an insight into aptamer-aided biosensors' technology over the last three to five years of work.

Author(s):  
Lauren Fear ◽  
Duarte Soares

Abstract For over 50 years, ITOPF has attended on-site at marine spills worldwide on behalf of the shipping industry. ITOPF staff have provided objective technical advice at over 800 incidents in 100 countries, gaining unparalleled insight into changing trends in ship-source pollution. Spills of oil were originally the focus of ITOPF's activities, initially from tankers and later from a wide range of ships. Over time, there has been a dramatic and sustained reduction in both the number of oil spills and the quantity of oil spilt from tankers, as ITOPF's statistics demonstrate. Though spills of oil cargoes and bunker fuel remain at the core of ITOPF's work, its activities have expanded in recent years to include other pollutants, such as vegetable oils, hazardous and non-hazardous chemicals, coal, foodstuffs, plastics and the myriad of other products transported in container ships. Almost two thirds of the incidents ITOPF attends now involve non-tankers and in the past 20 years, 14% of all attended incident involved products or substances other than, or in addition to, oil. Oil spill events can cause environmental damage and typically attract considerable media attention. However, other marine pollutants also have the potential to cause environmental damage and pose significant challenges for responders. This paper draws on ITOPF's first-hand experience to examine some of the recent trends in spill response, using case histories to highlight key issues involved with the response of spills of assorted oils and cargoes at sea.


2020 ◽  
Vol 29 (3S) ◽  
pp. 631-637
Author(s):  
Katja Lund ◽  
Rodrigo Ordoñez ◽  
Jens Bo Nielsen ◽  
Dorte Hammershøi

Purpose The aim of this study was to develop a tool to gain insight into the daily experiences of new hearing aid users and to shed light on aspects of aided performance that may not be unveiled through standard questionnaires. Method The tool is developed based on clinical observations, patient experiences, expert involvement, and existing validated hearing rehabilitation questionnaires. Results An online tool for collecting data related to hearing aid use was developed. The tool is based on 453 prefabricated sentences representing experiences within 13 categories related to hearing aid use. Conclusions The tool has the potential to reflect a wide range of individual experiences with hearing aid use, including auditory and nonauditory aspects. These experiences may hold important knowledge for both the patient and the professional in the hearing rehabilitation process.


Author(s):  
Nataliya Stoyanets ◽  
◽  
Mathias Onuh Aboyi ◽  

The article defines that for the successful implementation of an innovative project and the introduction of a new product into production it is necessary to use advanced technologies and modern software, which is an integral part of successful innovation by taking into account the life cycle of innovations. It is proposed to consider the general potential of the enterprise through its main components, namely: production and technological, scientific and technical, financial and economic, personnel and actual innovation potential. Base for the introduction of technological innovations LLC "ALLIANCE- PARTNER", which provides a wide range of support and consulting services, services in the employment market, tourism, insurance, translation and more. To form a model of innovative development of the enterprise, it is advisable to establish the following key aspects: the system of value creation through the model of cooperation with partners and suppliers; creating a value chain; technological platform; infrastructure, determine the cost of supply, the cost of activities for customers and for the enterprise as a whole. The system of factors of influence on formation of model of strategic innovative development of the enterprise is offered. The expediency of the cost of the complex of technological equipment, which is 6800.0 thousand UAH, is economically calculated. Given the fact that the company plans to receive funds under the program of socio-economic development of Sumy region, the evaluation of the effectiveness of the innovation project, the purchase of technological equipment, it is determined that the payback period of the project is 3 years 10 months. In terms of net present value (NPV), the project under study is profitable. The project profitability index (PI) meets the requirements for a positive decision on project implementation> 1.0. The internal rate of return of the project (IRR) also has a positive value of 22% because it exceeds the discount rate.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 789
Author(s):  
Shih-Fu Ou ◽  
Ya-Yun Zheng ◽  
Sin-Jen Lee ◽  
Shyi-Tien Chen ◽  
Chien-Hui Wu ◽  
...  

Graphene quantum dots, carbon nanomaterials with excellent fluorescence characteristics, are advantageous for use in biological systems owing to their small size, non-toxicity, and biocompatibility. We used the hydrothermal method to prepare functional N-doped carbon quantum dots (N-CQDs) from 1,3,6-trinitropyrene and analyzed their ability to fluorescently stain various bacteria. Our results showed that N-CQDs stain the cell septa and membrane of the Gram-negative bacteria Escherichia coli, Salmonellaenteritidis, and Vibrio parahaemolyticus and the Gram-positive bacteria Bacillus subtilis, Listeria monocytogenes, and Staphylococcus aureus. The optimal concentration of N-CQDs was approximately 500 ppm for Gram-negative bacteria and 1000 ppm for Gram-positive bacteria, and the exposure times varied with bacteria. N-Doped carbon quantum dots have better light stability and higher photobleaching resistance than the commercially available FM4-64. When excited at two different wavelengths, N-CQDs can emit light of both red and green wavelengths, making them ideal for bioimaging. They can also specifically stain Gram-positive and Gram-negative bacterial cell membranes. We developed an inexpensive, relatively easy, and bio-friendly method to synthesize an N-CQD composite. Additionally, they can serve as a universal bacterial membrane-staining dye, with better photobleaching resistance than commercial dyes.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1001
Author(s):  
Rui Huang ◽  
David C. Luther ◽  
Xianzhi Zhang ◽  
Aarohi Gupta ◽  
Samantha A. Tufts ◽  
...  

Nanoparticles (NPs) provide multipurpose platforms for a wide range of biological applications. These applications are enabled through molecular design of surface coverages, modulating NP interactions with biosystems. In this review, we highlight approaches to functionalize nanoparticles with ”small” organic ligands (Mw < 1000), providing insight into how organic synthesis can be used to engineer NPs for nanobiology and nanomedicine.


2021 ◽  
Vol 413 (9) ◽  
pp. 2389-2406 ◽  
Author(s):  
Soumyabrata Banik ◽  
Sindhoora Kaniyala Melanthota ◽  
Arbaaz ◽  
Joel Markus Vaz ◽  
Vishak Madhwaraj Kadambalithaya ◽  
...  

AbstractSmartphone-based imaging devices (SIDs) have shown to be versatile and have a wide range of biomedical applications. With the increasing demand for high-quality medical services, technological interventions such as portable devices that can be used in remote and resource-less conditions and have an impact on quantity and quality of care. Additionally, smartphone-based devices have shown their application in the field of teleimaging, food technology, education, etc. Depending on the application and imaging capability required, the optical arrangement of the SID varies which enables them to be used in multiple setups like bright-field, fluorescence, dark-field, and multiple arrays with certain changes in their optics and illumination. This comprehensive review discusses the numerous applications and development of SIDs towards histopathological examination, detection of bacteria and viruses, food technology, and routine diagnosis. Smartphone-based devices are complemented with deep learning methods to further increase the efficiency of the devices.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1486
Author(s):  
Eugene B. Caldona ◽  
Ernesto I. Borrego ◽  
Ketki E. Shelar ◽  
Karl M. Mukeba ◽  
Dennis W. Smith

Many desirable characteristics of polymers arise from the method of polymerization and structural features of their repeat units, which typically are responsible for the polymer’s performance at the cost of processability. While linear alternatives are popular, polymers composed of cyclic repeat units across their backbones have generally been shown to exhibit higher optical transparency, lower water absorption, and higher glass transition temperatures. These specifically include polymers built with either substituted alicyclic structures or aromatic rings, or both. In this review article, we highlight two useful ring-forming polymer groups, perfluorocyclobutyl (PFCB) aryl ether polymers and ortho-diynylarene- (ODA) based thermosets, both demonstrating outstanding thermal stability, chemical resistance, mechanical integrity, and improved processability. Different synthetic routes (with emphasis on ring-forming polymerization) and properties for these polymers are discussed, followed by their relevant applications in a wide range of aspects.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2566
Author(s):  
Boris A. Boom ◽  
Alessandro Bertolini ◽  
Eric Hennes ◽  
Johannes F. J. van den Brand

We present a novel analysis of gas damping in capacitive MEMS transducers that is based on a simple analytical model, assisted by Monte-Carlo simulations performed in Molflow+ to obtain an estimate for the geometry dependent gas diffusion time. This combination provides results with minimal computational expense and through freely available software, as well as insight into how the gas damping depends on the transducer geometry in the molecular flow regime. The results can be used to predict damping for arbitrary gas mixtures. The analysis was verified by experimental results for both air and helium atmospheres and matches these data to within 15% over a wide range of pressures.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1651
Author(s):  
Cristina Arqueros ◽  
Félix Zamora ◽  
Carmen Montoro

Global population growth and water resource scarcity are significant social problems currently being studied by many researchers focusing on finding new materials for water treatment. The aim is to obtain quality water suitable for drinking and industrial consumption. In this sense, an emergent class of crystalline porous materials known as Covalent-Organic Frameworks (COFs) offers a wide range of possibilities since their structures can be designed on demand for specific applications. Indeed, in the last decade, many efforts have been made for their use in water treatment. This perspective article aims to overview the state-of-the-art COFs collecting the most recent results in the field for water detection of pollutants and water treatment. After the introduction, where we overview the classical design strategies on COF design and synthesis for obtaining chemically stable COFs, we summarize the different experimental methodologies used for COFs processing in the form of supported and free-standing membranes and colloids. Finally, we describe the use of COFs in processes involving the detection of pollutants in water and wastewater treatment, such as the capture of organic compounds, heavy metals, and dyes, the degradation of organic pollutants, as well as in desalination processes. Finally, we provide a perspective on the field and the potential technological use of these novel materials.


2021 ◽  
pp. 135910532110299
Author(s):  
Terise Broodryk ◽  
Kealagh Robinson

Although anxiety and worry can motivate engagement with COVID-19 preventative behaviours, people may cognitively reframe these unpleasant emotions, restoring wellbeing at the cost of public health behaviours. New Zealand young adults ( n = 278) experiencing nationwide COVID-19 lockdown reported their worry, anxiety, reappraisal and lockdown compliance. Despite high knowledge of lockdown policies, 92.5% of participants reported one or more policy breaches ( M  = 2.74, SD = 1.86). Counter to predictions, no relationships were found between anxiety or worry with reappraisal or lockdown breaches. Findings highlight the importance of targeting young adults in promoting lockdown compliance and offer further insight into the role of emotion during a pandemic.


Sign in / Sign up

Export Citation Format

Share Document