scholarly journals indexGIXS – software for visualizing and interactive indexing of grazing-incidence scattering data

Author(s):  
Detlef-M. Smilgies ◽  
Ruipeng Li

Grazing incidence small- and wide-angle scattering (GISAXS, GIWAXS) are widely applied for the study of organic thin films, be it for the characterization of nanostructured morphologies in block copolymers, nanocomposites, or nanoparticle assemblies, or the packing and orientation of small aromatic molecules and conjugated polymers. Organic thin films typically are uniaxial powders, with specific crystallographic planes oriented parallel to the substrate surface. The associated fiber texture scattering patterns are complicated by refraction corrections and multiple scattering. We present an interactive graphics tool to index such patterns.

2021 ◽  
Author(s):  
Detlef-M. Smilgies ◽  
Ruipeng Li

Grazing incidence small- and wide-angle scattering (GISAXS, GIWAXS) are widely applied for the study of organic thin films, be it for the characterization of nanostructured morphologies in block copolymers, nanocomposites, or nanoparticle assemblies, or the packing and orientation of small aromatic molecules and conjugated polymers. Organic thin films typically are uniaxial powders, with specific crystallographic planes oriented parallel to the substrate surface. The associated fiber texture scattering patterns are complicated by refraction corrections and multiple scattering. We present an interactive graphics tool to index such patterns.


2007 ◽  
Vol 40 (s1) ◽  
pp. s669-s674 ◽  
Author(s):  
Jinhwan Yoon ◽  
Seungchel Choi ◽  
Sangwoo Jin ◽  
Kyeong Sik Jin ◽  
Kyuyoung Heo ◽  
...  

1995 ◽  
Vol 39 ◽  
pp. 659-664 ◽  
Author(s):  
Kenji Ishida ◽  
Akinori Kita ◽  
Kouichi Hayashi ◽  
Toshihisa Horiuchi ◽  
Shoichi Kal ◽  
...  

Thin film technology is rapidly evolving today, and the characterization of the thin film and its surface have become very important issue not only from scientific but also technological viewpoints. Although x-ray diffraction measurements have been used as suitable evaluation methods in crystallography studies, its application to the structural evaluation of the thin films, especially organic one having the low electron densities, is not easy due to the small amounts of scattering volume and the high obstructive scattering noise from the substrate. However, the x-ray diffraction measurements under grazing incidence will aid not only in overcoming the such problems but also in analyzing in-plane structure of the thin films. Therefore, so-called grazing incidence x-ray diffraction (GIXD) has been recognized as one of the most powerful tools for the surface and thin film studies.


2001 ◽  
Vol 665 ◽  
Author(s):  
Andrei Yu. Andreev ◽  
Helmut Sitter ◽  
Christoph J. Brabec ◽  
Peter Hinterdorfer ◽  
Günter Springholz ◽  
...  

ABSTRACTWe have studied the structure and growth regularities of highly ordered para-sexiphenyl (C36H26) thin films deposited by Hot Wall Epitaxy on mica. In particular, atomic force microscopy (AFM) was used to investigate the early growth stage of these films, in order to find the process controlling parameters. It was shown that the substrate temperature and the growth time are important parameters for control of the film morphology, in terms of the degree of anisotropy and long range order. X-ray diffraction pole figure technique and transmission electron microscopy were also used to characterize the crystallographic structure of the thicker films. We have shown that the highly ordered crystallites of para-sexiphenyl (showing needle-like morphology by AFM) are oriented with their (11 1 ) or (11 2 ) crystallographic planes parallel to the substrate surface. For each of these two orientations there are two opposite directions for growth of crystallites reflecting the two-fold symmetry of the mica surface.


2013 ◽  
Vol 1528 ◽  
Author(s):  
G. S. Belo ◽  
F. Nakagomi ◽  
P. E. N. de Souza ◽  
S. W. da Silva ◽  
D. A. Buchanan

AbstractGrazing Incidence Small-Angle X-ray Scattering (GISAXS) is a versatile technique for the analysis of nano and micro thin films surfaces. The scattering data depend strongly on the form and distribution of the scattering objects. In the present work GISAXS is used to study hafnium dioxide (HfO2) thin films deposited by magnetron sputtering using different deposition processes and post-deposition annealing conditions. Two distinct types of 15 nm thick samples were produced using different sputtering targets and different gas mixtures. The GISAXS results show that the ellipsoids that compose the thin films present a reduction in their size for both samples sets. For the sputtered Hf metal target samples, the ellipsoid diameter value shifted from 9 nm (as-deposited) to 6 nm following a 800 °C thermal treatment. For the sputtered HfO2 target samples the diameter value shifts from 19 nm (as-deposited) to 3 nm after a 800 °C anneal in oxygen. The size distribution, for both sets of samples, follows a Gaussian distribution function.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Netanel Shpigel ◽  
Sergey Sigalov ◽  
Fyodor Malchik ◽  
Mikhael D. Levi ◽  
Olga Girshevitz ◽  
...  

Abstract Nanoporous layers are widely spread in nature and among artificial devices. However, complex characterization of extensively nanoporous thin films showing porosity-dependent softening lacks consistency and reliability when using different analytical techniques. We introduce herein, a facile and precise method of such complex characterization by multi-harmonic QCM-D (Quartz Crystal Microbalance with Dissipation Monitoring) measurements performed both in the air and liquids (Au-Zn alloy was used as a typical example). The porosity values determined by QCM-D in air and different liquids are entirely consistent with that obtained from parallel RBS (Rutherford Backscattering Spectroscopy) and GISAXS (Grazing-Incidence Small-Angle Scattering) characterizations. This ensures precise quantification of the nanolayer porosity simultaneously with tracking their viscoelastic properties in liquids, significantly increasing sensitivity of the viscoelastic detection (viscoelastic contrast principle). Our approach is in high demand for quantifying potential-induced changes in nanoporous layers of complex architectures fabricated for various electrocatalytic energy storage and analytical devices.


2013 ◽  
Vol 46 (2) ◽  
pp. 466-475 ◽  
Author(s):  
Yecheol Rho ◽  
Byungcheol Ahn ◽  
Jinhwan Yoon ◽  
Moonhor Ree

A complete grazing-incidence X-ray scattering (GIXS) formula has been derived for nanopores buried in a polymer dielectric thin film supported by a substrate. Using the full power of the scattering formula, GIXS data from nanoporous polymethylsilsesquioxane dielectric thin films, a model nanoporous system, have successfully been analysed. The nanopores were found to be spherical and to have a certain degree of size distribution but were randomly dispersed in the film. In the film, GIXS was confirmed to arise predominantlyviathe first scattering process in which the incident X-ray beam scatters without reflection; the other scattering processes and their contributions were significantly dependent on the grazing angle. This study also confirmed that GIXS scattering can be analysed using only independent scattering terms, but this simple approach can only provide structural parameters. The cross terms were found to make a relatively small contribution to the intensity of the overall scattering but were required for the complete characterization of the measured two-dimensional scattering data, in particular the extracted out-of-plane scattering data, and their inclusion in the analysis enabled film properties such as film thickness, critical angle (i.e.electron density), refractive index and the absorption term to be determined.


2007 ◽  
Vol 40 (3) ◽  
pp. 630-640 ◽  
Author(s):  
P. Busch ◽  
D. Posselt ◽  
D.-M. Smilgies ◽  
M. Rauscher ◽  
C. M. Papadakis

Sign in / Sign up

Export Citation Format

Share Document