scholarly journals Deep Soil Water-Use Determines the Yield Benefit of Long-Cycle Wheat

2020 ◽  
Vol 11 ◽  
Author(s):  
Bonnie M. Flohr ◽  
James R. Hunt ◽  
John A. Kirkegaard ◽  
Brad Rheinheimer ◽  
Tony Swan ◽  
...  
Keyword(s):  
1987 ◽  
Vol 109 (3) ◽  
pp. 421-435 ◽  
Author(s):  
Kay F. Brown ◽  
A. B. Messem ◽  
R. J. Dunham ◽  
P. V. Biscoe

SummaryThe growth and water use of sugar beet affected by early (ED) and late (LD) drought was compared with that of irrigated (I) and unirrigated (NI) controls. Mobile shelters were used to exclude rain from ED plots during June and July, and LD plots during August and September, respectively, whereas outside these periods the ED and LD plots were irrigated as necessary.The ED treatment affected the fibrous roots severely. Many of the roots in the top 60 cm of soil died and development of the root system below this depth was slow. Expansion of the leaf canopy slowed, radiation interception was reduced and the rate of water use fell from about 1·2 times to 0·6 times Penman potential transpiration rate. The LD treatment, which was imposed when the fibrous root system was already extensive, had little effect on the fibrous roots except in the top soil. The accessible soil water was quickly depleted and the resulting stress was accompanied by earlier senescence of leaves. The rate of converting intercepted light to crop dry matter was reduced in both treatments. However, the ED treatment was the most detrimental because the amount of light intercepted in the months of highest radiation was greatly reduced owing to the restricted leaf cover. The relative effects on growth are reflected in the final sugar yields which were 8·7, 10·5, 9·9 and 12·0 (±0·30) t/ha in the ED, LD, NI and I treatments respectively.More of the deep soil water was used in the drought-affected plots (particularly LD) than in the irrigated controls. Maximum depths of water extraction were 140–150 cm in ED and I plots and > 170 cm in LD plots. The highest uptake rates per unit length of root (20–40 μl/cm per day) were measured in the deepest part of the root system. At all depths, uptake rates declined as the soil dried. After correcting for overestimated water use where necessary, the ratios of final dry matter and sugar yields respectively to season-long water use (June–October) were close to 1·4 and 0·8 t/ha per 25 mm for all four treatments.


2020 ◽  
Vol 13 (6) ◽  
pp. 793-800
Author(s):  
Ya-Juan Zhu ◽  
Guo-Jie Wang ◽  
Zhi-Ming Xin

Abstract Aims In desert ecosystems, water is a restricting factor for plant growth and vegetation dynamics. The relatively stable water source from deep soil profile or groundwater is important for plant survival during drought. Understanding water use strategy of endangered species, in desert ecosystem is essential for their conservation and restoration such as Ammopiptanthus mongolicus on the Mongolian Plateau. Methods The stable isotope method of δD and δ 18O was used to examine the main water sources of A. mongolicus and two companion shrubs, e.g. Artemisia ordosica and Artemisia xerophytica. The contribution of different water sources to each species was calculated by IsoSource model. Leaf δ 13C was used to compare long-term water use efficiency of three shrubs. Soil moisture and root distribution of three shrubs was measured to explain plant water use strategy. Important Findings The results showed that A. mongolicus relied on groundwater and 150–200 cm deep soil water, with the former contributing to almost half of its total water source. Artemisia ordosica mainly used 150–200 cm deep soil water, but also used shallow soil water within 100 cm in summer and autumn. Artemisia xerophytica mainly used 150–200 cm deep soil water and groundwater, with the latter contributing to about 30%–60% of its total water source. The three shrubs had dimorphic or deep root systems, which are in accord with their water sources. The WUE in the evergreen shrub A. mongolicus was higher than in two deciduous Artemisia shrubs, which may be an adaptive advantage in desert ecosystem. Therefore, groundwater is an important water source for the endangered shrub A. mongolicus in a drought year on Mongolian Plateau. Ammopiptanthus mongolicus and two Artemisia shrubs competed for deep soil water and groundwater.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7737
Author(s):  
Tiejun Bao ◽  
Yunnuan Zheng ◽  
Ze Zhang ◽  
Heyang Sun ◽  
Ran Chao ◽  
...  

Understanding of the dynamic patterns of plant water use in a changing environment is one of foci in plant ecology, and can provide basis for the development of best practice in restoration and protection of ecosystem. We studied the water use sources of three coexisting dominant plant species Leymus chinensis, Stipa grandis and Cleistogenes squarrosa growing in both enclosed and mowing grassland in a typical steppe. The oxygen stable isotope ratios (δ18O) of soil water and stem water of these three species were determined, along with soil moisture, before and after precipitation events. The results showed that (1) mowing had no significant effect on the soil moisture and its δ18O, whereas precipitation significantly changed the soil moisture though no significant effect detected on its δ18O. (2) C. squarrosa took up water majorly from top soil layer due to its shaollow root system; L. chinensis took up relative more water from deep soil layer, and S. grandis took up water from the middle to deep soil layers. (3) L. chinensis and S. grandis in mowing grassland tended to take up more water from the upper soil layers following precipitation events, but showed no sensitive change in water source from soil profile following the precipitation in the enclosed grassland, indicating a more sensitive change of soil water sources for the two species in mowing than enclosed grassland. The differences in root morphology and precipitation distribution may partly explain the differences in their water uptake from different soil layers. Our results have important theoretical values for understanding the water competition among plants in fluctuating environment and under different land use in the typical steppe.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3194
Author(s):  
Ying Ma ◽  
Yali Wu ◽  
Xianfang Song

Root water uptake plays an important role in water transport and carbon cycle among Groundwater–Soil–Plant–Atmosphere–Continuum. The acclimation of crops under elevated carbon dioxide concentrations (eCO2) depends greatly on their capability to exploit soil water resources. Quantifying root water uptake and its relationship with crop growth under eCO2 remains challenging. This study observed maize growth subjected to current CO2 (400 ppm) and eCO2 (700 ppm) treatments via a device combined with a climate chamber and weighing lysimeters. Root water uptake patterns were determined based on the isotopic tracing technique. The main water uptake depth shifted from 0−20 cm under current treatment to 20−40 cm under eCO2 at the seedling growth stage. Maize took up 22.7% and 15.4% more soil water from a main uptake depth of 40−80 cm at jointing and tasseling stages in response to eCO2, respectively. More soil water (8.0%) was absorbed from the 80−140 cm layer at the filling stage under eCO2. Soil water contributions at the main uptake depth during seedling stage were negatively associated with leaf transpiration rate (Tr), net photosynthetic rate (Pn), and leaf area index (LAI) under both treatments, whereas significant positive correlations in the 40−80 cm layer under current treatment shifted to the 80−140 cm layer by eCO2. Deep soil water benefited to improve Tr, Pn and LAI under both treatments. No significant correlation between soil water contributions in each layer and leaf water use efficiency was induced by eCO2. This study enhanced our knowledge of crop water use acclimation to future eCO2 and provides insights into agricultural water management.


Author(s):  
Xiaoliang Qin ◽  
Yüze Li ◽  
Duanpu Song ◽  
Lina Wei ◽  
Yunliang Han ◽  
...  

2017 ◽  
Vol 44 (2) ◽  
pp. 235 ◽  
Author(s):  
Ramamoorthy Purushothaman ◽  
Lakshmanan Krishnamurthy ◽  
Hari D. Upadhyaya ◽  
Vincent Vadez ◽  
Rajeev K. Varshney

Chickpeas are often grown under receding soil moisture and suffer ~50% yield losses due to drought stress. The timing of soil water use is considered critical for the efficient use of water under drought and to reduce yield losses. Therefore the root growth and the soil water uptake of 12 chickpea genotypes known for contrasts in drought and rooting response were monitored throughout the growth period both under drought and optimal irrigation. Root distribution reduced in the surface and increased in the deep soil layers below 30 cm in response to drought. Soil water uptake was the maximum at 45–60 cm soil depth under drought whereas it was the maximum at shallower (15–30 and 30–45 cm) soil depths when irrigated. The total water uptake under drought was 1-fold less than optimal irrigation. The amount of water left unused remained the same across watering regimes. All the drought sensitive chickpea genotypes were inferior in root distribution and soil water uptake but the timing of water uptake varied among drought tolerant genotypes. Superiority in water uptake in most stages and the total water use determined the best adaptation. The water use at 15–30 cm soil depth ensured greater uptake from lower depths and the soil water use from 90–120 cm soil was critical for best drought adaptation. Root length density and the soil water uptake across soil depths were closely associated except at the surface or the ultimate soil depths of root presence.


2014 ◽  
Vol 41 (8) ◽  
pp. 812 ◽  
Author(s):  
Iván Prieto ◽  
Francisco I. Pugnaire ◽  
Ronald J. Ryel

In arid systems, most plant mortality occurs during long drought periods when water is not available for plant uptake. In these systems, plants often benefit from scarce rain events occurring during drought but some of the mechanisms underlying this water use remain unknown. In this context, plant water use and redistribution after a large rain event could be a mechanism that allows deep-rooted shrubs to conservatively use water during drought. We tested this hypothesis by comparing soil and plant water dynamics in Artemisia tridentata ssp. vaseyana (Rydb.) Beetle shrubs that either received a rain event (20 mm) or received no water. Soil water content (SWC) increased in shallow layers after the event and increased in deep soil layers through hydraulic redistribution (HR). Our results show that Artemisia shrubs effectively redistributed the water pulse downward recharging deep soil water pools that allowed greater plant water use throughout the subsequent drought period, which ameliorated plant water potentials. Shrubs used shallow water pools when available and then gradually shifted to deep-water pools when shallow water was being used up. Both HR recharge and the shift to shallow soil water use helped conserve deep soil water pools. Summer water uptake in Artemisia not only improved plant water relations but also increased deep soil water availability during drought.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 549f-550
Author(s):  
Mongi Zekri ◽  
Bruce Schaffer ◽  
Stephen K. O'Hair ◽  
Roberto Nunez-Elisea ◽  
Jonathan H. Crane

In southern Florida, most tropical fruit crops between Biscayne and Everglades National Parks are irrigated at rates and frequencies based on experience and observations of tree growth and fruit yield rather than on reliable quantitative information of actual water use. This approach suggests that irrigation rates may be excessive and could lead to leaching of agricultural chemicals into the groundwater in this environmentally sensitive area. Therefore, a study is being conducted to increase water use efficiency and optimize irrigation by accurately scheduling irrigation using a very effective management tool (EnviroScan, Sentek Environmental Innovations, Pty., Kent, Australia) that continuously monitors soil water content with highly accurate capacitance multi-sensor probes installed at several depths within the soil profile. The system measures crop water use by monitoring soil water depletion rates and allows the maintenance of soil water content within the optimum range (below field capacity and well above the onset of plant water stress). The study is being conducted in growers' orchards with three tropical fruit crops (avocado, carambola, and `Tahiti' lime) to facilitate rapid adoption and utilization of research results.


2021 ◽  
Vol 491 ◽  
pp. 119156
Author(s):  
Binbin Li ◽  
Wantao Zhang ◽  
Shujie Li ◽  
Ju Wang ◽  
Guobin Liu ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2791
Author(s):  
Pengyan Su ◽  
Mingjun Zhang ◽  
Deye Qu ◽  
Jiaxin Wang ◽  
Yu Zhang ◽  
...  

As a species for ecological restoration in northern China, Tamarix ramosissima plays an important role in river protection, flood control, regional climate regulation, and landscape construction with vegetation. Two sampling sites were selected in the hillside and floodplain habitats along the Lanzhou City, and the xylems of T. ramosissima and potential water sources were collected, respectively. The Bayesian mixture model (MixSIAR) and soil water excess (SW-excess) were applied to analyze the relationship on different water pools and the utilization ratios of T. ramosissima to potential water sources in two habitats. The results showed that the slope and intercept of local meteoric water line (LMWL) in two habitats were smaller compared with the global meteoric water line (GMWL), which indicated the existence of drier climate and strong evaporation in the study area, especially in the hillside habitat. Except for the three months in hillside, the SW-excess of T. ramosissima were negative, which indicated that xylems of T. ramosissima are more depleted in δ2H than the soil water line. In growing seasons, the main water source in hillside habitat was deep soil water (80~150 cm) and the utilization ratio was 63 ± 17% for T. ramosissima, while the main water source in floodplain habitat was shallow soil water (0~30 cm), with a utilization ratio of 42.6 ± 19.2%, and the water sources were different in diverse months. T. ramosissima has a certain adaptation mechanism and water-use strategies in two habitats, and also an altered water uptake pattern in acquiring the more stable water. This study will provide a theoretical basis for plant water management in ecological environment protection in the Loess Plateau.


Sign in / Sign up

Export Citation Format

Share Document