scholarly journals A Large-Scale Model of Lateral Pressure on a Buried Pipeline in Medium Dense Sand

2021 ◽  
Vol 11 (12) ◽  
pp. 5554
Author(s):  
Hamzh Alarifi ◽  
Hisham Mohamad ◽  
Nor Faridah Nordin ◽  
Muhammad Yusoff ◽  
Aminu Darda’u Rafindadi ◽  
...  

Modern countries utilise buried pipelines for the long-distance transportation of water, oil, and gas due to their efficiency and continuity of delivery to receiving locations. Due to soil movements such as landslides, excessive earth pressure imposed on buried pipelines causes damage and, consequently, leaking of liquids, gases or other harmful effluents into the soil, groundwater, and atmosphere. By using a large-scale physical model, the lateral pipeline–soil interaction in sandy soil was researched. This study investigated the stress distribution on a buried pipe induced by lateral soil displacement. The external forces on the buried pipe caused by the surrounding soil motion were measured using earth pressure cells installed in the active zone along the pipeline. Additionally, visual inspection of ground deformation patterns on the surface, including tensile cracks, above a shallow-buried pipeline subjected to lateral soil movement was reported. The results revealed that lateral soil movement has a potency effect on buried pipelines. The findings also indicated that the highest stresses occur at the unstable soil boundaries prior to reaching the soil’s peak strength. After observing the soil surface’s rupture, most of the stress increments were concentrated in the middle section of the pipe.

2016 ◽  
Vol 53 (11) ◽  
pp. 1794-1806 ◽  
Author(s):  
Brad P. Wham ◽  
Christina Argyrou ◽  
Thomas D. O’Rourke

This paper focuses on the effect of tunneling-induced ground deformation on the response of jointed cast iron and ductile iron pipelines that (i) cross the settlement profile perpendicular to the tunnel centerline and (ii) connect through 90° tees with a pipeline parallel to the tunnel centerline. The modeling involves two-dimensional finite element analyses that account for coupled forces both parallel and perpendicular to the pipeline, and incorporates the results of large-scale laboratory tests to characterize the joints. Pipeline response is quantified with respect to joint rotation and pullout at various leakage levels as well as the allowable tensile strain. The paper describes soil displacements induced by a 6.1 m (20 ft.) diameter tunnel in clay and sand. Joint rotations and maximum tensile strains for pipelines in sand exceed those in clay by up to three for the same geometric conditions. Cast iron pipelines crossing the tunnel centerline are most vulnerable to leakage from joint rotation; ductile iron pipelines have sufficient capacity against joint leakage in all cases studied. Cast iron pipelines that connect with 90° tees are highly vulnerable to leakage from pullout due to lateral soil movement. Guidance is provided for risk assessment, design, and utility operations.


2000 ◽  
Vol 15 ◽  
pp. 158-165
Author(s):  
H. Kon ◽  
K. Ishihara ◽  
Y. Tsukamoto ◽  
H. Nakazawa ◽  
T. Masuo ◽  
...  

Author(s):  
Abdelfettah Fredj ◽  
Aaron Dinovitzer ◽  
Joe Zhou

Soil-pipe interactions when large ground movements occur are an important consideration in pipeline design, route selection, guide monitoring and reduce the risk of damage or failure. Large ground movement can be caused by slope failures, faulting, landslides and seismic activities. Such conditions induce large deformations of both the soil and pipe. Analyses of such behavior pose a significant challenge to capabilities of standard finite elements as the capability to analyze large deformations is required. This requirement is difficult to meet for Lagrangian-based code. New developments using ALE methods make it possible to determine soil and pipe deformation confidently for large displacements. This paper describes a study performed to investigate the mechanical behavior of a pipeline subjected to large soil movement. A 3D continuum modeling using an ALE (Arbitrary Eulerian Lagrangian) formulation was developed and run using LS-DYNA. The results are compared with published experimental data of large-scale test to verify the numerical analysis method. The analysis is further extended to analyze the soil-pipe interaction under permanent ground deformation such as those associated with surface fault rupture and landslides.


2019 ◽  
Vol 9 (16) ◽  
pp. 3284 ◽  
Author(s):  
Feifei Dong ◽  
Xuemeng Bie ◽  
Jiangping Tian ◽  
Xiangdong Xie ◽  
GuoFeng Du

Long-distance oil and gas pipelines are inevitably impacted by rockfalls during geologic hazards such as mud-rock flow and landslides, which have a serious effect on the safe operation of pipelines. In view of this, an experimental and numerical study on the strain behavior of buried pipelines under the impact load of rockfall was developed. The impact load exerted on the soil, and the strains of buried pipeline caused by the impact load were theoretically derived. A scale model experiment was conducted using a self-designed soil-box to simulate the complex geological conditions of the buried pipeline. The simulation model of hammer–soil–pipeline was established to investigate the dynamic response of the buried pipeline. Based on the theoretical, experimental, and finite element analysis (FEA) results, the overall strain behavior of the buried pipeline was obtained and the effects of parameters on the strain developments of the pipelines were analyzed. Research results show that the theoretical calculation results of the impact load and the peak strain were in good agreement with the experimental and FEA results, which indicates that the mathematical formula and the finite element models are accurate for the prediction of pipeline response under the impact load. In addition, decreasing the diameter, as well as increasing the wall thickness of the pipeline and the buried depth above the pipeline, could improve the ability of the pipeline to resist the impact load. These results could provide a reference for seismic design of pipelines in engineering.


1949 ◽  
Vol 114 (1) ◽  
pp. 507-523
Author(s):  
Ralph B. Peck ◽  
Howard C. Roberts ◽  
Armand Mayer ◽  
S. Packshaw ◽  
J. Owen Lake ◽  
...  

Author(s):  
Ron Harris

Before the seventeenth century, trade across Eurasia was mostly conducted in short segments along the Silk Route and Indian Ocean. Business was organized in family firms, merchant networks, and state-owned enterprises, and dominated by Chinese, Indian, and Arabic traders. However, around 1600 the first two joint-stock corporations, the English and Dutch East India Companies, were established. This book tells the story of overland and maritime trade without Europeans, of European Cape Route trade without corporations, and of how new, large-scale, and impersonal organizations arose in Europe to control long-distance trade for more than three centuries. It shows that by 1700, the scene and methods for global trade had dramatically changed: Dutch and English merchants shepherded goods directly from China and India to northwestern Europe. To understand this transformation, the book compares the organizational forms used in four major regions: China, India, the Middle East, and Western Europe. The English and Dutch were the last to leap into Eurasian trade, and they innovated in order to compete. They raised capital from passive investors through impersonal stock markets and their joint-stock corporations deployed more capital, ships, and agents to deliver goods from their origins to consumers. The book explores the history behind a cornerstone of the modern economy, and how this organizational revolution contributed to the formation of global trade and the creation of the business corporation as a key factor in Europe's economic rise.


2013 ◽  
Vol 14 (2) ◽  
Author(s):  
Noor Fachrizal

Biomass such as agriculture waste and urban waste are enormous potency as energy resources instead of enviromental problem. organic waste can be converted into energy in the form of liquid fuel, solid, and syngas by using of pyrolysis technique. Pyrolysis process can yield higher liquid form when the process can be drifted into fast and flash response. It can be solved by using microwave heating method. This research is started from developing an experimentation laboratory apparatus of microwave-assisted pyrolysis of biomass energy conversion system, and conducting preliminary experiments for gaining the proof that this method can be established for driving the process properly and safely. Modifying commercial oven into laboratory apparatus has been done, it works safely, and initial experiments have been carried out, process yields bio-oil and charcoal shortly, several parameters are achieved. Some further experiments are still needed for more detail parameters. Theresults may be used to design small-scale continuous model of productionsystem, which then can be developed into large-scale model that applicable for comercial use.


Sign in / Sign up

Export Citation Format

Share Document