scholarly journals A Novel Preprocessing Method for Dynamic Point-Cloud Compression

2021 ◽  
Vol 11 (13) ◽  
pp. 5941
Author(s):  
Mun-yong Lee ◽  
Sang-ha Lee ◽  
Kye-dong Jung ◽  
Seung-hyun Lee ◽  
Soon-chul Kwon

Computer-based data processing capabilities have evolved to handle a lot of information. As such, the complexity of three-dimensional (3D) models (e.g., animations or real-time voxels) containing large volumes of information has increased exponentially. This rapid increase in complexity has led to problems with recording and transmission. In this study, we propose a method of efficiently managing and compressing animation information stored in the 3D point-clouds sequence. A compressed point-cloud is created by reconfiguring the points based on their voxels. Compared with the original point-cloud, noise caused by errors is removed, and a preprocessing procedure that achieves high performance in a redundant processing algorithm is proposed. The results of experiments and rendering demonstrate an average file-size reduction of 40% using the proposed algorithm. Moreover, 13% of the over-lap data are extracted and removed, and the file size is further reduced.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Seoungjae Cho ◽  
Jonghyun Kim ◽  
Warda Ikram ◽  
Kyungeun Cho ◽  
Young-Sik Jeong ◽  
...  

A ubiquitous environment for road travel that uses wireless networks requires the minimization of data exchange between vehicles. An algorithm that can segment the ground in real time is necessary to obtain location data between vehicles simultaneously executing autonomous drive. This paper proposes a framework for segmenting the ground in real time using a sparse three-dimensional (3D) point cloud acquired from undulating terrain. A sparse 3D point cloud can be acquired by scanning the geography using light detection and ranging (LiDAR) sensors. For efficient ground segmentation, 3D point clouds are quantized in units of volume pixels (voxels) and overlapping data is eliminated. We reduce nonoverlapping voxels to two dimensions by implementing a lowermost heightmap. The ground area is determined on the basis of the number of voxels in each voxel group. We execute ground segmentation in real time by proposing an approach to minimize the comparison between neighboring voxels. Furthermore, we experimentally verify that ground segmentation can be executed at about 19.31 ms per frame.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 140
Author(s):  
Jinxuan Xu ◽  
Qian Xie ◽  
Honghua Chen ◽  
Jun Wang

Real-time consistent plane detection (RCPD) from structured point cloud sequences facilitates various high-level computer vision and robotic tasks. However, it remains a challenge. Existing techniques for plane detection suffer from a long running time or the problem that the plane detection result is not precise. Meanwhile, labels of planes are not consistent over the whole image sequence due to plane loss in the detection stage. In order to resolve these issues, we propose a novel superpixel-based real-time plane detection approach, while keeping their consistencies over frames simultaneously. In summary, our method has the following key contributions: (i) a real-time plane detection algorithm to extract planes from raw structured three-dimensional (3D) point clouds collected by depth sensors; (ii) a superpixel-based segmentation method to make the detected plane exactly match its actual boundary; and, (iii) a robust strategy to recover the missing planes by utilizing the contextual correspondences information in adjacent frames. Extensive visual and numerical experiments demonstrate that our method outperforms state-of-the-art methods in terms of efficiency and accuracy.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 201
Author(s):  
Michael Bekele Maru ◽  
Donghwan Lee ◽  
Kassahun Demissie Tola ◽  
Seunghee Park

Modeling a structure in the virtual world using three-dimensional (3D) information enhances our understanding, while also aiding in the visualization, of how a structure reacts to any disturbance. Generally, 3D point clouds are used for determining structural behavioral changes. Light detection and ranging (LiDAR) is one of the crucial ways by which a 3D point cloud dataset can be generated. Additionally, 3D cameras are commonly used to develop a point cloud containing many points on the external surface of an object around it. The main objective of this study was to compare the performance of optical sensors, namely a depth camera (DC) and terrestrial laser scanner (TLS) in estimating structural deflection. We also utilized bilateral filtering techniques, which are commonly used in image processing, on the point cloud data for enhancing their accuracy and increasing the application prospects of these sensors in structure health monitoring. The results from these sensors were validated by comparing them with the outputs from a linear variable differential transformer sensor, which was mounted on the beam during an indoor experiment. The results showed that the datasets obtained from both the sensors were acceptable for nominal deflections of 3 mm and above because the error range was less than ±10%. However, the result obtained from the TLS were better than those obtained from the DC.


2019 ◽  
Vol 11 (10) ◽  
pp. 1204 ◽  
Author(s):  
Yue Pan ◽  
Yiqing Dong ◽  
Dalei Wang ◽  
Airong Chen ◽  
Zhen Ye

Three-dimensional (3D) digital technology is essential to the maintenance and monitoring of cultural heritage sites. In the field of bridge engineering, 3D models generated from point clouds of existing bridges is drawing increasing attention. Currently, the widespread use of the unmanned aerial vehicle (UAV) provides a practical solution for generating 3D point clouds as well as models, which can drastically reduce the manual effort and cost involved. In this study, we present a semi-automated framework for generating structural surface models of heritage bridges. To be specific, we propose to tackle this challenge via a novel top-down method for segmenting main bridge components, combined with rule-based classification, to produce labeled 3D models from UAV photogrammetric point clouds. The point clouds of the heritage bridge are generated from the captured UAV images through the structure-from-motion workflow. A segmentation method is developed based on the supervoxel structure and global graph optimization, which can effectively separate bridge components based on geometric features. Then, recognition by the use of a classification tree and bridge geometry is utilized to recognize different structural elements from the obtained segments. Finally, surface modeling is conducted to generate surface models of the recognized elements. Experiments using two bridges in China demonstrate the potential of the presented structural model reconstruction method using UAV photogrammetry and point cloud processing in 3D digital documentation of heritage bridges. By using given markers, the reconstruction error of point clouds can be as small as 0.4%. Moreover, the precision and recall of segmentation results using testing date are better than 0.8, and a recognition accuracy better than 0.8 is achieved.


Author(s):  
I.-C. Lee ◽  
F. Tsai

A series of panoramic images are usually used to generate a 720° panorama image. Although panoramic images are typically used for establishing tour guiding systems, in this research, we demonstrate the potential of using panoramic images acquired from multiple sites to create not only 720° panorama, but also three-dimensional (3D) point clouds and 3D indoor models. Since 3D modeling is one of the goals of this research, the location of the panoramic sites needed to be carefully planned in order to maintain a robust result for close-range photogrammetry. After the images are acquired, panoramic images are processed into 720° panoramas, and these panoramas which can be used directly as panorama guiding systems or other applications. <br><br> In addition to these straightforward applications, interior orientation parameters can also be estimated while generating 720° panorama. These parameters are focal length, principle point, and lens radial distortion. The panoramic images can then be processed with closerange photogrammetry procedures to extract the exterior orientation parameters and generate 3D point clouds. In this research, VisaulSFM, a structure from motion software is used to estimate the exterior orientation, and CMVS toolkit is used to generate 3D point clouds. Next, the 3D point clouds are used as references to create building interior models. In this research, Trimble Sketchup was used to build the model, and the 3D point cloud was added to the determining of locations of building objects using plane finding procedure. In the texturing process, the panorama images are used as the data source for creating model textures. This 3D indoor model was used as an Augmented Reality model replacing a guide map or a floor plan commonly used in an on-line touring guide system. <br><br> The 3D indoor model generating procedure has been utilized in two research projects: a cultural heritage site at Kinmen, and Taipei Main Station pedestrian zone guidance and navigation system. The results presented in this paper demonstrate the potential of using panoramic images to generate 3D point clouds and 3D models. However, it is currently a manual and labor-intensive process. A research is being carried out to Increase the degree of automation of these procedures.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3952 ◽  
Author(s):  
* ◽  
*

Three Dimensional (3D) models are widely used in clinical applications, geosciences, cultural heritage preservation, and engineering; this, together with new emerging needs such as building information modeling (BIM) develop new data capture techniques and devices with a low cost and reduced learning curve that allow for non-specialized users to employ it. This paper presents a simple, self-assembly device for 3D point clouds data capture with an estimated base price under €2500; furthermore, a workflow for the calculations is described that includes a Visual SLAM-photogrammetric threaded algorithm that has been implemented in C++. Another purpose of this work is to validate the proposed system in BIM working environments. To achieve it, in outdoor tests, several 3D point clouds were obtained and the coordinates of 40 points were obtained by means of this device, with data capture distances ranging between 5 to 20 m. Subsequently, those were compared to the coordinates of the same targets measured by a total station. The Euclidean average distance errors and root mean square errors (RMSEs) ranging between 12–46 mm and 8–33 mm respectively, depending on the data capture distance (5–20 m). Furthermore, the proposed system was compared with a commonly used photogrammetric methodology based on Agisoft Metashape software. The results obtained demonstrate that the proposed system satisfies (in each case) the tolerances of ‘level 1’ (51 mm) and ‘level 2’ (13 mm) for point cloud acquisition in urban design and historic documentation, according to the BIM Guide for 3D Imaging (U.S. General Services).


Author(s):  
Omar A. Mures ◽  
Alberto Jaspe ◽  
Emilio J. Padrón ◽  
Juan R. Rabuñal

Recent advances in acquisition technologies, such as LIDAR and photogrammetry, have brought back to popularity 3D point clouds in a lot of fields of application of Computer Graphics: Civil Engineering, Architecture, Topography, etc. These acquisition systems are producing an unprecedented amount of geometric data with additional attached information, resulting in huge datasets whose processing and storage requirements exceed usual approaches, presenting new challenges that can be addressed from a Big Data perspective by applying High Performance Computing and Computer Graphics techniques. This chapter presents a series of applications built on top of Point Cloud Manager (PCM), a middleware that provides an abstraction for point clouds with arbitrary attached data and makes it easy to perform out-of-core operations on them on commodity CPUs and GPUs. Hence, different kinds of real world applications are tackled, showing both real-time and offline examples, and render-oriented and computation-related operations as well.


Author(s):  
Jianqing Wu ◽  
Hao Xu ◽  
Yuan Sun ◽  
Jianying Zheng ◽  
Rui Yue

The high-resolution micro traffic data (HRMTD) of all roadway users is important for serving the connected-vehicle system in mixed traffic situations. The roadside LiDAR sensor gives a solution to providing HRMTD from real-time 3D point clouds of its scanned objects. Background filtering is the preprocessing step to obtain the HRMTD of different roadway users from roadside LiDAR data. It can significantly reduce the data processing time and improve the vehicle/pedestrian identification accuracy. An algorithm is proposed in this paper, based on the spatial distribution of laser points, which filters both static and moving background efficiently. Various thresholds of point density are applied in this algorithm to exclude background at different distances from the roadside sensor. The case study shows that the algorithm can filter background LiDAR points in different situations (different road geometries, different traffic demands, day/night time, different speed limits). Vehicle and pedestrian shape can be retained well after background filtering. The low computational load guarantees this method can be applied for real-time data processing such as vehicle monitoring and pedestrian tracking.


2020 ◽  
Vol 12 (18) ◽  
pp. 3043 ◽  
Author(s):  
Juan M. Jurado ◽  
Luís Pádua ◽  
Francisco R. Feito ◽  
Joaquim J. Sousa

The optimisation of vineyards management requires efficient and automated methods able to identify individual plants. In the last few years, Unmanned Aerial Vehicles (UAVs) have become one of the main sources of remote sensing information for Precision Viticulture (PV) applications. In fact, high resolution UAV-based imagery offers a unique capability for modelling plant’s structure making possible the recognition of significant geometrical features in photogrammetric point clouds. Despite the proliferation of innovative technologies in viticulture, the identification of individual grapevines relies on image-based segmentation techniques. In that way, grapevine and non-grapevine features are separated and individual plants are estimated usually considering a fixed distance between them. In this study, an automatic method for grapevine trunk detection, using 3D point cloud data, is presented. The proposed method focuses on the recognition of key geometrical parameters to ensure the existence of every plant in the 3D model. The method was tested in different commercial vineyards and to push it to its limit a vineyard characterised by several missing plants along the vine rows, irregular distances between plants and occluded trunks by dense vegetation in some areas, was also used. The proposed method represents a disruption in relation to the state of the art, and is able to identify individual trunks, posts and missing plants based on the interpretation and analysis of a 3D point cloud. Moreover, a validation process was carried out allowing concluding that the method has a high performance, especially when it is applied to 3D point clouds generated in phases in which the leaves are not yet very dense (January to May). However, if correct flight parametrizations are set, the method remains effective throughout the entire vegetative cycle.


Author(s):  
A. Mostafavi ◽  
M. Scaioni ◽  
V. Yordanov

Abstract. The realistic possibility of using non-metric digital cameras to achieve reliable 3D models has eased the application of photogrammetry in different domains. Documentation, conservation and dissemination of the Cultural Heritage (CH) can be obtained and implemented through virtual copies and replicas. Structure-from-Motion (SfM) photogrammetry has widely proven its impressive potential for image-based 3D reconstruction resulting in great 3D point clouds’ acquisitions but at minimal cost. Images from Unmanned Aerial Vehicles (UAVs) can be also processed within SfM pipeline to obtain point cloud of Cultural Heritage sites in remote regions. Both aerial and terrestrial images can be integrated to obtain a more complete 3D. In this paper, the application of SfM photogrammetry for surveying of the Ziggurat Chogha Zanbil in Iran is presented. Here point clouds have been derived from oblique and nadir photos captured from UAV as well as terrestrial photos. The obtained four point clouds have been compared on the basis of different techniques to highlight differences among them.


Sign in / Sign up

Export Citation Format

Share Document