scholarly journals Leaching Behaviour of Construction and Demolition Wastes and Recycled Aggregates: Statistical Analysis Applied to the Release of Contaminants

2021 ◽  
Vol 11 (14) ◽  
pp. 6265
Author(s):  
Alessandra Diotti ◽  
Giovanni Plizzari ◽  
Sabrina Sorlini

Construction and demolition wastes represent a primary source of new alternative materials which, if properly recovered, can be used to replace virgin raw materials partially or totally. The distrust of end-users in the use of recycled aggregates is mainly due to the environmental performance of these materials. In particular, the release of pollutants into the surrounding environment appears to be the aspect of greatest concern. This is because these materials are characterized by a strong heterogeneity which can sometimes lead to contaminant releases above the legal limits for recovery. In this context, an analysis of the leaching behaviour of both CDWs and RAs was conducted by applying a statistical analysis methodology. Subsequently, to evaluate the influence of the particle size and the volumetric reduction of the material on the release of contaminants, several experimental leaching tests were carried out according to the UNI EN 12457-2 and UNI EN 12457-4 standards. The results obtained show that chromium, mercury, and COD are the most critical parameters for both CDWs and RAs. Moreover, the material particle size generally affects the release of contaminants (i.e., finer particles showed higher releases), while the crushing process does not always involve higher releases than the sieving process.

2020 ◽  
Vol 12 (24) ◽  
pp. 10326
Author(s):  
Alessandra Diotti ◽  
Adela Perèz Galvin ◽  
Andrea Piccinali ◽  
Giovanni Plizzari ◽  
Sabrina Sorlini

Construction and demolition wastes are widely recognized as the main waste stream in the EU, and their recycling and recovery is an important issue in sustainable building industry development. The composition of construction and demolition wastes is highly heterogeneous and is influenced by several factors, including the raw materials and construction products used. The environmental performance of these materials are therefore considerably variable and, in some cases, do not comply with the regulatory limits established to ensure the protection of the natural environment. In this context, this paper presents a data analysis on the environmental behavior of construction and demolition wastes and recycled aggregates in terms of both chemical composition and the release of contaminants according to a leaching test. Subsequently, the most critical parameters for recovery were identified and statistically evaluated. The leaching results showed that SO4, Cu, and COD are critical compounds for both CDWs and RAs.


2017 ◽  
Vol 898 ◽  
pp. 1717-1723 ◽  
Author(s):  
Xue Mei Yi ◽  
Shota Suzuki ◽  
Xiong Zhang Liu ◽  
Ran Guo ◽  
Tomohiro Akiyama

Combustion synthesis (CS) of β-SiAlON was conducted using a 3D ball mill, with a focus on the effect of the 2D/3D ball mill premixing conditions on the CS raw material particle size as well as on the yield and grain shape of the final products. The results showed that the particle size distribution of the raw materials was significantly affected by the premixing conditions. Various particle sizes and particle size distributions could easily be obtained by using a 3D mill instead of a 2D mill due to the complex biaxial rotation movement of 3D milling. The particle size was more sensitive to the rotation ratio (vertical spin/horizontal spin, Vv/Vh) than the rotation rate when using 3D milling. Finally, β-SiAlON with less than 5 mass% unreacted Si was obtained using premix milling conditions of 135×200 [vertical spin (rpm) × horizontal spin (rpm)]. The grain shapes of the final products were clearly influenced by the particle size distribution of the raw mixtures.


2021 ◽  
Vol 15 (56) ◽  
pp. 203-216
Author(s):  
Kheira Camellia Nehar ◽  
Dalila Benamara

Concrete, a material of prime importance, is widely used in various works. Among the raw materials composing concrete, aggregates come first. It is widely acknowledged that the consumption of natural aggregates increases with the growth in the amount of concrete needed. It has recently emerged that concrete waste can be recycled and reused in civil engineering works after a series of treatments. Moreover, in order to protect the environment and based on the principles of sustainable development, it was considered urgent to produce a High Strength Concrete incorporating recycled materials in addition to silica fume and a high-efficiency superplasticizer. This would certainly help to establish a harmonious sustainable development that guaranties the ecological balance and environmental protection, and prevents the depletion of natural resources. This study is part of a larger research program that that seeks to recover, recycle and valorize construction and demolition wastes. The main objective sought in this article is firstly to use aggregates from demolition concrete in the manufacture of a new concrete with high mechanical and rheological performance, and secondly, to model the behavior of this type of concrete using the Finite Element Method. This modeling aims to evaluate the maximum compressive strengths and compare them with those obtained experimentally.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1061
Author(s):  
Honggang Chen ◽  
Mingzhong Wang ◽  
Yao Qi ◽  
Yongbo Li ◽  
Xiaopeng Zhao

A smart meta-superconductor Bi(Pb)SrCaCuO (B(P)SCCO) may increase the critical transition temperature (TC) of B(P)SCCO by electroluminescence (EL) energy injection of inhomogeneous phases. However, the increase amplitude ΔTC (ΔTC=TC−TC,pure) of TC is relatively small. In this study, a smart meta-superconductor B(P)SCCO with different matrix sizes was designed. Three kinds of raw materials with different particle sizes were used, and different series of Y2O3:Sm3+, Y2O3, Y2O3:Eu3+, and Y2O3:Eu3++Ag-doped samples and pure B(P)SCCO were prepared. Results indicated that the TC of the Y2O3 or Y2O3:Sm3+ non-luminescent dopant doping sample is lower than that of pure B(P)SCCO. However, the TC of the Y2O3:Eu3++Ag or Y2O3:Eu3+ luminescent inhomogeneous phase doping sample is higher than that of pure B(P)SCCO. With the decrease of the raw material particle size from 30 to 5 μm, the particle size of the B(P)SCCO superconducting matrix in the prepared samples decreases, and the doping content of the Y2O3:Eu3++Ag or Y2O3:Eu3+ increases from 0.2% to 0.4%. Meanwhile, the increase of the inhomogeneous phase content enhances the ΔTC. When the particle size of raw material is 5 μm, the doping concentration of the luminescent inhomogeneous phase can be increased to 0.4%. At this time, the zero-resistance temperature and onset transition temperature of the Y2O3:Eu3++Ag doped sample are 4 and 6.3 K higher than those of pure B(P)SCCO, respectively.


2019 ◽  
Vol 64 (02) ◽  
pp. 51-59
Author(s):  
Marina Todorovska Ackovska ◽  
Nikola Geskovski ◽  
Katerina Goracinova

Sucrose as one of the most commonly used raw materials in pediatric formulations is soluble and sticky excipient and its manipulation in high shear granulators may be very difficult. Therefore, to determine the correct amount of liquid binder is very important because it falls in a very narrow range and may vary due to small variations in the material properties or environmental conditions. The possibility of using the sugar as powder for granulation may be very challenging because of solubility and moisture adsorption properties of crystalline sugar, especially if the binder solution is water. The aim of this study was trying to solve these problems and produce sucrose granules using high share granulation and water as a binding liquid, with properties required for final product good performance. By reducing the sucrose particle size and improving the uniformity of the size distribution, the differences of the processes of nucleation and growth for small and large particles might be reduced. According to the variable importance or VIP scores from the developed partial least square (PLS) model, raw material particle size is as influential variable as the quantity and composition of the granulation liquid (Gra), granulation time (Grn) and impeller rate (Imp). Keywords: sucrose, particle size distribution, high-shear granulation, partial least square


Author(s):  
C. J. Chan ◽  
K. R. Venkatachari ◽  
W. M. Kriven ◽  
J. F. Young

Dicalcium silicate (Ca2SiO4) is a major component of Portland cement. It has also been investigated as a potential transformation toughener alternative to zirconia. It has five polymorphs: α, α'H, α'L, β and γ. Of interest is the β-to-γ transformation on cooling at about 490°C. This transformation, accompanied by a 12% volume increase and a 4.6° unit cell shape change, is analogous to the tetragonal-to-monoclinic transformation in zirconia. Due to the processing methods used, previous studies into the particle size effect were limited by a wide range of particle size distribution. In an attempt to obtain a more uniform size, a fast quench rate involving a laser-melting/roller-quenching technique was investigated.The laser-melting/roller-quenching experiment used precompacted bars of stoichiometric γ-Ca2SiO4 powder, which were synthesized from AR grade CaCO3 and SiO2xH2O. The raw materials were mixed by conventional ceramic processing techniques, and sintered at 1450°C. The dusted γ-Ca2SiO4 powder was uniaxially pressed into 0.4 cm x 0.4 cm x 4 cm bars under 34 MPa and cold isostatically pressed under 172 MPa. The γ-Ca2SiO4 bars were melted by a 10 KW-CO2 laser.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Lino Bianco

AbstractRuins are a statement on the building materials used and the construction method employed. Casa Ippolito, now in ruins, is typical of 17th-century Maltese aristocratic country residences. It represents an illustration of secondary or anthropogenic geodiversity. This paper scrutinises these ruins as a primary source in reconstructing the building’s architecture. The methodology involved on-site geographical surveying, including visual inspection and non-invasive tests, a geological survey of the local lithostratigraphy, and examination of notarial deeds and secondary sources to support findings about the building’s history as read from its ruins. An unmanned aerial vehicle was used to digitally record the parlous state of the architectural structure and karsten tubes were used to quantify the surface porosity of the limestone. The results are expressed from four perspectives. The anatomy of Casa Ippolito, as revealed in its ruins, provides a cross-section of its building history and shows two distinct phases in its construction. The tissue of Casa Ippolito—the building elements and materials—speaks of the knowledge of raw materials and their properties among the builders who worked on both phases. The architectural history of Casa Ippolito reveals how it supported its inhabitants’ wellbeing in terms of shelter, water and food. Finally, the ruins in their present state bring to the fore the site’s potential for cultural tourism. This case study aims to show that such ruins are not just geocultural remains of historical built fabric. They are open wounds in the built structure; they underpin the anatomy of the building and support insights into its former dynamics. Ruins offer an essay in material culture and building physics. Architectural ruins of masonry structures are anthropogenic discourse rendered in stone which facilitate not only the reconstruction of spaces but also places for human users; they are a statement on the wellbeing of humanity throughout history.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2247
Author(s):  
Fernando da Silva Souza ◽  
José Maria Franco de Carvalho ◽  
Gabriela Grotti Silveira ◽  
Vitória Cordeiro Araújo ◽  
Ricardo André Fiorotti Peixoto

The lack of usable aggregates for civil construction in Rio Branco (capital of Acre, a Federal State in the Amazon region) makes the production and use of recycled aggregates from construction and demolition waste (CDW) an alternative of great interest. In this study, a comprehensive characterization of CDW collected from 24 construction sites of six building types and three different construction phases (structures, masonry, and finishing) was carried out. The fine and coarse recycled aggregates were produced and evaluated in 10 different compositions. The aggregates’ performance was evaluated in four mixtures designed for laying and coating mortars with a total replacement of conventional aggregates and a mixture designed for a C25 concrete with 50% and 100% replacement of conventional aggregates. CDW mortars showed lower densities and greater water retention, initial adhesion, and mechanical strength than conventional mortars. CDW concretes presented lower densities and greater resistance to chloride penetration than conventional concrete, with a small mechanical strength reduction. The recycled CDW aggregates proved to be technologically feasible for safe application in mortars and concrete; for this reason, it is believed that the alternative and proposed methodology is of great interest to the Amazonian construction industry, considering the high costs of raw materials and the need for defining and consolidating a sustainable development model for the Amazon region.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 232
Author(s):  
Pedro J. Sánchez-Soto ◽  
Eduardo Garzón ◽  
Luis Pérez-Villarejo ◽  
George N. Angelopoulos ◽  
Dolores Eliche-Quesada

In this work, an examination of mining wastes of an albite deposit in south Spain was carried out using X-ray Fluorescence (XRF), X-ray diffraction (XRD), particle size analysis, thermo-dilatometry and Differential Thermal Analysis (DTA) and Thermogravimetric (TG) analysis, followed by the determination of the main ceramic properties. The albite content in two selected samples was high (65–40 wt. %), accompanied by quartz (25–40 wt. %) and other minor minerals identified by XRD, mainly kaolinite, in agreement with the high content of silica and alumina determined by XRF. The content of Na2O was in the range 5.44–3.09 wt. %, being associated with albite. The iron content was very low (<0.75 wt. %). The kaolinite content in the waste was estimated from ~8 to 32 wt. %. The particle size analysis indicated values of 11–31 wt. % of particles <63 µm. The ceramic properties of fired samples (1000–1350 °C) showed progressive shrinkage by the thermal effect, with water absorption and open porosity almost at zero at 1200–1250 °C. At 1200 °C, the bulk density reached a maximum value of 2.38 g/cm3. An abrupt change in the phase evolution by XRD was found from 1150 to 1200 °C, with the disappearance of albite by melting in accordance with the predictions of the phase diagram SiO2-Al2O3-Na2O and the system albite-quartz. These fired materials contained as main crystalline phases quartz and mullite. Quartz was present in the raw samples and mullite was formed by decomposition of kaolinite. The observation of mullite forming needle-shape crystals was revealed by Scanning Electron Microscopy (SEM). The formation of fully densified and vitrified mullite materials by firing treatments was demonstrated.


Clay Minerals ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 453-465 ◽  
Author(s):  
I. Gonzalez ◽  
E. Galan ◽  
A. Miras ◽  
P. Aparicio

AbstractAn attempt has been made to assess new potential applications for the Bailén clays, traditionally used for manufacturing bricks, based on mineralogical, chemical, particle size, plasticity and firing results. Raw materials and mixtures used by the local factory were selected and tested with the addition of some diatomite, feldspar or kaolin. Based on their properties, clay materials from Bailén might be suitable for making porous red wall tiles, clinker, vitrified red floor tiles and porous light-coloured wall tiles by pressing; the first could be manufactured from the raw materials and mixtures currently used by the local manufactures. On the other hand, stoneware shaped by extrusion, such as perforated bricks, facing bricks and roofing tiles, can be also manufactured from the mixtures used at the factory if they contain 20-25% carbonate and small amounts of iron oxides; lightweight bricks require black and yellow clays with diatomite.


Sign in / Sign up

Export Citation Format

Share Document