scholarly journals Contrastive Analysis on the Ventilation Performance of a Combined Solar Chimney

2021 ◽  
Vol 12 (1) ◽  
pp. 156
Author(s):  
Huifang Liu ◽  
Peijia Li ◽  
Bendong Yu ◽  
Mingyi Zhang ◽  
Qianli Tan ◽  
...  

A combined solar chimney is proposed in this paper that integrates an inclined-roof solar chimney with a traditional Trombe wall. The ventilation performance of the combined solar chimney is analyzed numerically and then compared with the Trombe wall and the inclined-roof solar chimney. The feasibility of different operation modes and the ventilation effect under different environment conditions are also discussed. The results show that when the ambient temperature ranges from 298 to 303 K in the summer, a natural ventilation mode is appropriate. Otherwise, an anti-overheating mode is recommended. When the ambient temperature is lower than 273 K in the winter, a space heating mode has a better heating effect. A preheating mode can be employed to improve the indoor air quality when the ambient temperature is higher than 278 K. The simulation results indicates that the ventilation effect of the combined solar chimney is better than that of the Trombe wall and the inclined-roof solar chimney, and the problem of overheating can be avoided. The study provides guidance for the optimal operation of a combined solar chimney.

Author(s):  
M. F. Mohamed ◽  
M. Behnia ◽  
S. King ◽  
D. Prasad

Cross ventilation is a more effective ventilation strategy in comparison to single-sided ventilation. In the NSW Residential Flat Design Code1 (RFDC) the majority of apartments are required to adopt cross ventilation. However, in the case of studio and one-bedroom apartments, it is acknowledged that single-sided ventilation may prevail. Deep plan studio and one-bedroom apartments may achieve lower amenity of summer thermal comfort and indoor air quality where mechanical ventilation is not provided by air conditioning. Since compliance with the code may allow up to 40% of apartments in a development in Sydney to be single sided, it is important to understand the natural ventilation performance of such apartments. The objective of this paper is to investigate the natural ventilation potential in single-sided ventilated apartments to improve indoor air quality and thermal comfort. This investigation includes simulating various facade treatments involving multiple opening and balcony configurations. Balcony configurations are included in this study because, in Sydney, a balcony is a compulsory architectural element in any apartment building. The study uses computational fluid dynamics (CFD) software to simulate and predict the ventilation performance of each apartment configuration. This study suggests that properly configured balconies and openings can significantly improve indoor ventilation performance for enhanced indoor air quality and thermal comfort, by optimizing the available prevailing wind. However, it is important to note that inappropriately designed fac¸ade treatments also could diminish natural ventilation performance.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hamza Laloui ◽  
Noor Hanita Abdul Majid ◽  
Aliyah Nur Zafirah Sanusi

Purpose This paper aims to investigate the impacts of introducing voids combinations on natural ventilation performance in high-rise residential building living unit. Design/methodology/approach This study was carried out through field measurement and computational fluid dynamics methods. The parameters of the study are void types and sizes, and a wind angle was used to formulate case studies. Findings The results indicate that the provision of a single-sided horizontal void larger by 50% increase the indoor air velocity performance up to 322.37% to 0.471 m/s in the living unit and achieves the required velocity for thermal comfort. Originality/value Passive design features are the most desirable techniques to enhance natural ventilation performance in the high-rise residential apartments for thermal comfort and indoor air quality purposes.


2013 ◽  
Vol 368-370 ◽  
pp. 603-606 ◽  
Author(s):  
Chun Han Chien ◽  
Hsien Te Lin

This study focuses on the efficiency of passive solar chimney in natural ventilation performance of the conference hall at the Magic School of Green Technology (MSGT) in Tainan, Taiwan. The air exchange rate in the conference hall was between 5.73 ACH and 9.11 ACH, which exceeded the minimum air ventilation rate required in Taiwan. This shows that a passive solar chimney can effectively applied to the conference hall to meet indoor ventilation and air exchange requirements without using air conditioning.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2536 ◽  
Author(s):  
Payam Nejat ◽  
Fatemeh Jomehzadeh ◽  
Hasanen Hussen ◽  
John Calautit ◽  
Muhd Abd Majid

Generally, two-third of a building’s energy is consumed by heating, ventilation and air-conditioning systems. One green alternative for conventional air conditioner systems is the implementation of passive cooling. Wing walls and windcatchers are two prominent passive cooling techniques which use wind as a renewable resource for cooling. However, in low wind speed regions and climates, the utilization of natural ventilation systems is accompanied by serious uncertainties. The performance of ventilation systems can be potentially enhanced by integrating windcatchers with wing walls. Since previous studies have not considered this integration, in the first part of this research the effect of this integration on the ventilation performance was assessed and the optimum angle was revealed. However, there is still gap of this combination; thus, in the second part, the impact of wing wall length on the indoor air quality factors was evaluated. This research implemented a Computational Fluid Dynamics (CFD) method to address the gap. The CFD simulation was successfully validated with experimental data from wind tunnel tests related to the previous part. Ten different lengths from 10 cm to 100 cm were analyzed and it was found that the increase in wing wall length leads to a gradual reduction in ventilation performance. Hence, the length does not have a considerable influence on the indoor air quality factors. However, the best performance was seen in 10 cm, that could provide 0.8 m/s for supply air velocity, 790 L/s for air flow rate, 39.5 1/h for air change rate, 107 s for mean age of air and 92% for air change effectiveness.


2012 ◽  
Vol 512-515 ◽  
pp. 307-310 ◽  
Author(s):  
Han Bing Qi ◽  
Qiu Shi Wang ◽  
Dong Li ◽  
Hao Ran Bai

Our country building energy consumption is amazing, building ventilation energy consumption is about more than 20% of the whole energy consumption , its energy saving potential is very great, How to reduce ventilation energy consumption and still keep good indoor air quality, makes the indoor natural ventilation ways becoming the focus of attention. This paper studies the solar chimney,one of ways of solar strengthening natural ventilation,strengthening natural ventilation;At the same time use FLUENT software simulate solar chimney model,Analysis the calculated results, get a reasonable solar chimney thickness and the air flow to meet the indoor ventilated requirements, so as to provide theoretical basis for the practical application.


2014 ◽  
Vol 9 (2) ◽  
pp. 145-160 ◽  
Author(s):  
Mohd Farid Mohamed ◽  
Steve King ◽  
Masud Behnia ◽  
Deo Prasad

Natural ventilation performance can be influenced by various factors, including facade treatments such as balconies. Balconies have been commonly incorporated into residential buildings for various purposes, yet the provision of a balcony as a passive design strategy to improve natural ventilation is not one of its common purposes. The objective of this study is to investigate the effect of balcony design on the natural ventilation performance of cross-ventilated high-rise apartments. This study uses Computational Fluid Dynamics (CFD) models to predict ventilation performance. CFD models are selected because of their accuracy, flexibility and ability to provide comprehensive data for the investigation. This study suggests that balconies in high-rise apartments could improve the ventilation performance of high-rise apartments, but that balconies can also have a negative impact on ventilation performance if not appropriately designed. Finally, this study suggests that balconies could improve the level of thermal comfort and indoor air quality of apartments by providing greater indoor air speed and better ventilation performance, respectively.


2012 ◽  
Vol 518-523 ◽  
pp. 910-913
Author(s):  
Wei Wang ◽  
Zhuang Yu ◽  
Hui Zhang ◽  
Hai Tao Wang

Based on observation of characteristics of NAI concentration of part of an office-building in Shenzhen, air quality of different equipments for cooling were assessed using ion polarity ratio (q) and air ion assessment index (CI). The result show that the air cleanness degree of the natural ventilation indoor is better than mechanical ventilation, using renewable energy for cooling is better than normal air-conditioning, and placed the negative ion generator has improved indoor air quality significantly. So the authors suggest to take NAI concentration as a monitoring and assessment indicators of the indoor environment, so as to provide a scientific basis and design concept for energy planning and environmental protection in the future.


Sign in / Sign up

Export Citation Format

Share Document