scholarly journals Research on the Simplified Design of a Centrifugal Compressor Impeller Based on Meridional Plane Modification

2018 ◽  
Vol 8 (8) ◽  
pp. 1339 ◽  
Author(s):  
Hong Xie ◽  
Moru Song ◽  
XiaoLan Liu ◽  
Bo Yang ◽  
Chuangang Gu

This study mainly focuses on investigating the influence of meridional contour of a steam centrifugal compressor on aerodynamic performance. An optimal design method is put forwards, in which the hub-line on the meridional plane is modified and optimized. Based on the data from numerical simulation, aerodynamic characteristics are compared in detail among a prototype and three modified impellers. It is shown that stall margin of the optimized impeller can be enlarged by approximately 50%, though at design point efficiency and pressure ratio is decreased a little bit. Under the working conditions with low flow rate, the optimized impeller exhibits the best performance compared with the prototype and two other impellers. Furthermore, numerical result is validated by the experiment and is matched the measure data very well.

Author(s):  
C. Xu ◽  
R. S. Amano

An unshrouded centrifugal compressor would give up clearance very large in relation to the span of the blades, because centrifugal compressors produce a sufficiently large pressure rise in fewer stages. This problem is more acute for a low flow high-pressure ratio impeller. The large tip clearance would cause flow separations, and as a result it would drop both the efficiency and surge margin. Thus a design of a high efficiency and wide operation range for a centrifugal compressor is a great challenge. This paper describes a new development of high efficiency and a large surge margin flow coefficient of 0.145 centrifugal compressor. A viscous turbomachinery optimal design method developed by the authors for axial flow machine was further extended and used in this centrifugal compressor design. The new compressor has three main parts: impeller, a low solidity diffuser and volute. The tip clearance is under a special consideration in this design to allow impeller insensitiveness to the clearance. A three-dimensional low solidity diffuser design method is proposed and applied to this design. This design demonstrated to be successful to extend the low solidarity diffusers to high-pressure ratio compressor. The design performance range showed the total to static efficiency of the compressor being about 85% and stability range over 35%. The experimental results showed that the test results are in good agreement with the design.


Author(s):  
M. Zangeneh ◽  
N. Amarel ◽  
K. Daneshkhah ◽  
H. Krain

In this work, the redesign of a centrifugal transonic compressor impeller with splitter blades by means of the three-dimensional inverse design code TURBOdesign-1 is presented. The basic design methodology for impellers with splitter blades is outlined and is applied in a systematic way to improve the aero/mechanical performance of a transonic 6.2:1 pressure ratio centrifugal compressor impeller. The primary design variables are the main and splitter blades loading and their thickness distributions, the splitter to main blade work ratio, as well as the span-wise swirl distribution. The flow in the original and redesigned impellers are then analyzed by means of a commercial CFD code (ANSYS CFX). The predicted flow field for the original impeller is compared with detailed L2F measurements inside and outside the impeller. The validated CFD results are used to compare the flow field in the optimized and original impeller. It is shown that the inverse design method could be effectively used to control the position and strength of the shock waves, eliminate flow separation and hence obtain a more uniform impeller exit flow in order to improve the aerodynamic performance. In addition, some results are presented on the comparison of stress and vibration in both impellers.


Author(s):  
C. Xu ◽  
R. S. Amano

A low flow coefficient unshrouded centrifugal compressor would give up clearance very large in relation to the span of the blades, because centrifugal compressors produce a sufficiently large pressure rise in fewer stages. This problem is more acute for a low flow high-pressure ratio impeller. The large tip clearance would cause flow separations, and as a result it would drop both the efficiency and surge margin. Thus a design of a high efficiency and wide operation range for a low flow coefficient centrifugal compressor is a great challenge. This paper describes a new development of high efficiency and large surge margin low flow coefficient (0.145) centrifugal compressor. A viscous turbomachinery optimal design method developed by the authors for axial flow machine was further extended and used in this centrifugal compressor design. The new compressor has three main parts: impeller, a low solidity diffuser and volute. The tip clearance is under a special consideration in this design to allow impeller insensitiveness to the clearance. A three-dimensional low solidity diffuser design method is proposed and applied to this design. This design is successful to extend the low solidarity diffusers to high-pressure ratio compressor. It is demonstrated that the design is in a great success. The design performance range of the total to static efficiency of the compressor is about 85% and stability range is over 35%. The experimental results showed that the test results are in good agreement with the design.


Author(s):  
C. Xu ◽  
R. S. Amano

A low flow coefficient unshrouded centrifugal compressor would give up clearance very large in relation to the span of the blades, because centrifugal compressors produce a sufficiently large pressure rise in fewer stages. This problem is more acute for a low flow high-pressure ratio impeller. The large tip clearance would cause flow separations, and as a result it would drop both the efficiency and surge margin. Thus a design of a high efficiency and wide operation range for a low flow coefficient centrifugal compressor is a great challenge. This paper describes a new development of high efficiency and large surge margin low flow coefficient (0.145) centrifugal compressor. A viscous turbomachinery optimal design method developed by the authors for axial flow machine was further extended and used in this centrifugal compressor design. The new compressor has three main parts: impeller, a low solidity diffuser and volute. The tip clearance is under a special consideration in this design to allow impeller insensitiveness to the clearance. A three-dimensional low solidity diffuser design method is proposed and applied to this design. This design is successful to extend the low solidarity diffusers to high-pressure ratio compressor. It is demonstrated that the design is in a great success. The design performance range of the total to static efficiency of the compressor is about 85% and stability range is over 35%. The experimental results showed that the test results are in good agreement with the design.


Author(s):  
Mahdi Nili-Ahmadabadi ◽  
Mohammad Durali ◽  
Ali Hajilouy-Benisi

This paper is concerned with a quasi-3D design method for centrifugal compressor impeller in the meridional plane. The method links up a novel inverse design algorithm, called Ball-Spine Algorithm (BSA), and a quasi-3D analysis code. The Euler equation is solved on the meridional plane for a numerical domain of which some unknown boundaries (hub and shroud) are iteratively modified under the BSA until a prescribed pressure distribution is reached. In BSA, the unknown walls are composed of a set of virtual balls that move freely along the specified directions called spines. The difference between target and current pressure distribution causes to deform flexible boundary at each modification step. In order to validate the quasi-3D analysis code, an existing compressor is investigated by some experiments in which several static pressure points on the shroud, the flow parameters at the compressor inlet and outlet are measured. Comparison of the quasi-3D analysis results with experimental results shows good agreement. Also, a full 3D Navier-Stokes code is used to analyze the existing and designed compressor numerically. The results show that the momentum decrease near the shroud wall in the existing compressor is removed by hub-shroud modification resulting an improvement in performance by 0.6 percent.


Author(s):  
Farzad Poursadegh ◽  
Ali Hajilouy-Benisi ◽  
Mahdi Nili-Ahmadabadi

In this research, a novel quasi-3D design method is developed for the centrifugal compressor impeller on the blade-to-blade plane. In this method, an iterative inverse design method called Ball-Spine Algorithm (BSA) is incorporated into the quasi-3D analysis code solving the Euler equations on the blade-to-blade and meridional planes at each shape modification step. In design procedure, the difference between the target and current pressure distribution along the suction or pressure sides of the impeller causes the blade-to-blade profile to be changed and the target pressure distribution to be satisfied. In order to validate the quasi-3D analysis code, the centrifugal compressor of a gas turbine is investigated numerically using a full 3D Navier-Stokes analysis code. The meridional and blade-to-blade planes pressure distributions obtained from quasi-3D and 3D analysis codes are compared showing good agreement between them. Furthermore, the pressure ratio and efficiency of the centrifugal compressor is obtained by some experiments in which the flow parameters at the compressor inlet and outlet are measured. Comparison of 3D analysis results with the experimental results shows good agreements. Finally, the current pressure distribution along the pressure side at 50% span is smoothed and considered as the target pressure distribution. The quasi-3D design procedure converges to a new profile after 400 modification steps. The designed impeller is numerically analyzed showing the flow pattern of the impeller is improved and the total to static efficiency of impeller increases by 0.64 percent and the total pressure ratio increased by 3.38 percent.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4292
Author(s):  
Kirill Kabalyk ◽  
Andrzej Jaeschke ◽  
Grzegorz Liśkiewicz ◽  
Michał Kulak ◽  
Tomasz Szydłowski ◽  
...  

The article describes an assessment of possible changes in constant fatigue life of a medium flow-coefficient centrifugal compressor impeller subject to operation at close-to-surge point. Some aspects of duct acoustics are additionally analyzed. The experimental measurements at partial load are presented and are primarily used for validation of unidirectionally coupled fluid-structural numerical model. The model is based on unsteady finite-volume fluid-flow simulations and on finite-element transient structural analysis. The validation is followed by the model implementation to replicate the industry-scale loads with reasonably higher rotational speed and suction pressure. The approach demonstrates satisfactory accuracy in prediction of stage performance and unsteady flow field in vaneless diffuser. The latter is deduced from signal analysis relying on continuous wavelet transformations. On the other hand, it is found that the aerodynamic incidence losses at close-to-surge point are underpredicted. The structural simulation generates considerable amounts of numerical noise, which has to be separated prior to evaluation of fluid-induced dynamic strain. The main source of disturbance is defined as a stationary region of static pressure drop caused by flow contraction at volute tongue and leading to first engine-order excitation in rotating frame of reference. Eventually, it is concluded that the amplitude of excitation is too low to lead to any additional fatigue.


2014 ◽  
Vol 663 ◽  
pp. 347-353
Author(s):  
Layth H. Jawad ◽  
Shahrir Abdullah ◽  
Zulkifli R. ◽  
Wan Mohd Faizal Wan Mahmood

A numerical study that was made in a three-dimensional flow, carried out in a modified centrifugal compressor, having vaned diffuser stage, used as an automotive turbo charger. In order to study the influence of vaned diffuser meridional outlet section with a different width ratio of the modified centrifugal compressor. Moreover, the performance of the centrifugal compressor was dependent on the proper matching between the compressor impeller along the vaned diffuser. The aerodynamic characteristics were compared under different meridional width ratio. In addition, the velocity vectors in diffuser flow passages, and the secondary flow in cross-section near the outlet of diffuser were analysed in detail under different meridional width ratio. Another aim of this research was to study and simulate the effect of vaned diffuser on the performance of a centrifugal compressor. The simulation was undertaken using commercial software so-called ANSYS CFX, to predict numerically the performance charachteristics. The results were generated from CFD and were analysed for better understanding of the fluid flow through centrifugal compressor stage and as a result of the minimum width ratio the flow in diffuser passage tends to be uniformity. Moreover, the backflow and vortex near the pressure surface disappear, and the vortex and detachment near the suction surface decrease. Conclusively, it was observed that the efficiency was increased and both the total pressure ratio and static pressure for minimum width ratio are increased.


Author(s):  
Bob Mischo ◽  
Beat Ribi ◽  
Christof Seebass-Linggi ◽  
Sebastiano Mauri

The focus of this paper lies on the leakage flow across the shroud of a centrifugal compressor impeller. It is common practice to use shrouded impellers in multi stage compressors featuring a single shaft. The rotating impeller then has to be sealed against the higher pressure in the downstream diffuser by means of labyrinths. The relative amount of leakage is higher for stages designed for low flow, meaning that the associated losses gain in relevance. In addition to this loss source, the injection of the leakage flow has a serious influence on the main flow in a region where it is prone to separation, i.e. at the suction side of the impeller blades close to the shroud, where the highest relative velocities are found. The present paper discusses the numerical results of several geometrical arrangements where the leakage flow was mixed with the main flow in different ways. The distance between the location of injection and the leading edge of the impeller as well as the orientation of the injected flow showed a distinct influence on the performance of the entire stage, mainly on stability.


Sign in / Sign up

Export Citation Format

Share Document