scholarly journals Oscillation of Fourth-Order Functional Differential Equations with Distributed Delay

Axioms ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 61 ◽  
Author(s):  
Clemente Cesarano ◽  
Omar Bazighifan

In this paper, the authors obtain some new sufficient conditions for the oscillation of all solutions of the fourth order delay differential equations. Some new oscillatory criteria are obtained by using the generalized Riccati transformations and comparison technique with first order delay differential equation. Our results extend and improve many well-known results for oscillation of solutions to a class of fourth-order delay differential equations. The effectiveness of the obtained criteria is illustrated via examples.

2021 ◽  
pp. 1-11
Author(s):  
Jian Wang ◽  
Yuanguo Zhu

Uncertain delay differential equation is a class of functional differential equations driven by Liu process. It is an important model to describe the evolution process of uncertain dynamical system. In this paper, on the one hand, the analytic expression of a class of linear uncertain delay differential equations are investigated. On the other hand, the new sufficient conditions for uncertain delay differential equations being stable in measure and in mean are presented by using retarded-type Gronwall inequality. Several examples show that our stability conditions are superior to the existing results.


2018 ◽  
Vol 68 (6) ◽  
pp. 1385-1396 ◽  
Author(s):  
Arun Kumar Tripathy ◽  
Rashmi Rekha Mohanta

Abstract In this paper, several sufficient conditions for oscillation of all solutions of fourth order functional differential equations of neutral type of the form $$\begin{array}{} \displaystyle \bigl(r(t)(y(t)+p(t)y(t-\tau))''\bigr)''+q(t)G\bigl(y(t-\sigma)\bigr)=0 \end{array}$$ are studied under the assumption $$\begin{array}{} \displaystyle \int\limits^{\infty}_{0}\frac{t}{r(t)}{\rm d} t =\infty \end{array}$$


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Gang Li ◽  
Weizhong Ling ◽  
Changming Ding

We establish a new comparison principle for impulsive differential systems with time delay. Then, using this comparison principle, we obtain some sufficient conditions for several stabilities of impulsive delay differential equations. Finally, we present an example to show the effectiveness of our results.


2020 ◽  
Vol 70 (5) ◽  
pp. 1153-1164
Author(s):  
Arun Kumar Tripathy ◽  
Rashmi Rekha Mohanta

AbstractIn this paper, sufficient conditions for oscillation of unbounded solutions of a class of fourth order neutral delay differential equations of the form$$\begin{array}{} \displaystyle (r(t)(y(t)+p(t)y(t-\tau))'')''+q(t)G(y(t-\alpha))-h(t)H(y(t-\sigma))=0 \end{array}$$are discussed under the assumption$$\begin{array}{} \displaystyle \int\limits^{\infty}_{0}\frac{t}{r(t)}\text{d}~~ t=\infty \end{array}$$


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
O. Moaaz ◽  
A. Muhib ◽  
D. Baleanu ◽  
W. Alharbi ◽  
E. E. Mahmoud

AbstractAn interesting point in studying the oscillatory behavior of solutions of delay differential equations is the abbreviation of the conditions that ensure the oscillation of all solutions, especially when studying the noncanonical case. Therefore, this study aims to reduce the oscillation conditions of the fourth-order delay differential equations with a noncanonical operator. Moreover, the approach used gives more accurate results when applied to some special cases, as we explained in the examples.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1095
Author(s):  
Clemente Cesarano ◽  
Osama Moaaz ◽  
Belgees Qaraad ◽  
Nawal A. Alshehri ◽  
Sayed K. Elagan ◽  
...  

Differential equations with delay arguments are one of the branches of functional differential equations which take into account the system’s past, allowing for more accurate and efficient future prediction. The symmetry of the equations in terms of positive and negative solutions plays a fundamental and important role in the study of oscillation. In this paper, we study the oscillatory behavior of a class of odd-order neutral delay differential equations. We establish new sufficient conditions for all solutions of such equations to be oscillatory. The obtained results improve, simplify and complement many existing results.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
M. Mustafa Bahşi ◽  
Mehmet Çevik

The pantograph equation is a special type of functional differential equations with proportional delay. The present study introduces a compound technique incorporating the perturbation method with an iteration algorithm to solve numerically the delay differential equations of pantograph type. We put forward two types of algorithms, depending upon the order of derivatives in the Taylor series expansion. The crucial convenience of this method when compared with other perturbation methods is that this method does not require a small perturbation parameter. Furthermore, a relatively fast convergence of the iterations to the exact solutions and more accurate results can be achieved. Several illustrative examples are given to demonstrate the efficiency and reliability of the technique, even for nonlinear cases.


2013 ◽  
Vol 63 (6) ◽  
Author(s):  
Said Grace ◽  
Martin Bohner ◽  
Ailian Liu

AbstractSome new criteria for the oscillation of all solutions of certain fourth-order functional differential equations are established.


1986 ◽  
Vol 34 (1) ◽  
pp. 1-9 ◽  
Author(s):  
István Győri

Sufficient conditions are obtained for all solutions of a general scalar linear functional differential equation to be oscillatory. Our main theorem concerns some particular cases of a conjecture of Hunt and Yorke.


Sign in / Sign up

Export Citation Format

Share Document