scholarly journals Pharmacokinetics and Molecular Modeling Indicate nAChRα4-Derived Peptide HAEE Goes through the Blood–Brain Barrier

Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 909
Author(s):  
Yurii A. Zolotarev ◽  
Vladimir A. Mitkevich ◽  
Stanislav I. Shram ◽  
Alexei A. Adzhubei ◽  
Anna P. Tolstova ◽  
...  

One of the treatment strategies for Alzheimer’s disease (AD) is based on the use of pharmacological agents capable of binding to beta-amyloid (Aβ) and blocking its aggregation in the brain. Previously, we found that intravenous administration of the synthetic tetrapeptide Acetyl-His-Ala-Glu-Glu-Amide (HAEE), which is an analogue of the 35–38 region of the α4 subunit of α4β2 nicotinic acetylcholine receptor and specifically binds to the 11–14 site of Aβ, reduced the development of cerebral amyloidogenesis in a mouse model of AD. In the current study on three types of laboratory animals, we determined the biodistribution and tissue localization patterns of HAEE peptide after single intravenous bolus administration. The pharmacokinetic parameters of HAEE were established using uniformly tritium-labeled HAEE. Pharmacokinetic data provided evidence that HAEE goes through the blood–brain barrier. Based on molecular modeling, a role of LRP1 in receptor-mediated transcytosis of HAEE was proposed. Altogether, the results obtained indicate that the anti-amyloid effect of HAEE, previously found in a mouse model of AD, most likely occurs due to its interaction with Aβ species directly in the brain.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Gwenaëlle Le Roux ◽  
Rafika Jarray ◽  
Anne-Cécile Guyot ◽  
Serena Pavoni ◽  
Narciso Costa ◽  
...  

Abstract The development of effective central nervous system (CNS) drugs has been hampered by the lack of robust strategies to mimic the blood-brain barrier (BBB) and cerebrovascular impairments in vitro. Recent technological advancements in BBB modeling using induced pluripotent stem cells (iPSCs) allowed to overcome some of these obstacles, nonetheless the pertinence for their use in drug permeation study remains to be established. This mandatory information requires a cross comparison of in vitro and in vivo pharmacokinetic data in the same species to avoid failure in late clinical drug development. Here, we measured the BBB permeabilities of 8 clinical positron emission tomography (PET) radioligands with known pharmacokinetic parameters in human brain in vivo with a newly developed in vitro iPSC-based human BBB (iPSC-hBBB) model. Our findings showed a good correlation between in vitro and in vivo drug brain permeability (R2 = 0.83; P = 0.008) which contrasted with the limited correlation between in vitro apparent permeability for a set of 18 CNS/non-CNS compounds using the in vitro iPSCs-hBBB model and drug physicochemical properties. Our data suggest that the iPSC-hBBB model can be integrated in a flow scheme of CNS drug screening and potentially used to study species differences in BBB permeation.


2019 ◽  
Vol 40 (4) ◽  
pp. 799-807 ◽  
Author(s):  
Andrea Varrone ◽  
Katarina Varnäs ◽  
Aurelija Jucaite ◽  
Zsolt Cselényi ◽  
Peter Johnström ◽  
...  

Osimertinib is a tyrosine kinase inhibitor (TKI) of the mutated epidermal growth factor receptor (EGFRm) with observed efficacy in patients with brain metastases. Brain exposure and drug distribution in tumor regions are important criteria for evaluation and confirmation of CNS efficacy. The aim of this PET study was therefore to determine brain distribution and exposure of 11C-labelled osimertinib administered intravenously in subjects with an intact blood–brain barrier. Eight male healthy subjects (age 52 ± 8 years) underwent one PET measurement with 11C-osimertinib. The pharmacokinetic parameters Cmax (brain) (standardized uptake value), Tmax (brain) and AUC0–90 min brain/blood ratio were calculated. The outcome measure for 11C-osimertinib brain exposure was the total distribution volume ( VT). 11C-osimertinib distributed rapidly to the brain, with higher uptake in grey than in white matter. Mean Cmax, Tmax and AUC0–90 min brain/blood ratio were 1.5 (range 1–1.8), 13 min (range 5–30 min), and 3.8 (range 3.3–4.1). Whole brain and white matter VT were 14 mL×cm−3 (range 11–18) and 7 mL×cm−3 (range 5–12). This study in healthy volunteers shows that 11C-osimertinib penetrates the intact blood–brain barrier. The approach used further illustrates the role of molecular imaging in facilitating the development of novel drugs for the treatment of malignancies affecting the brain.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi274-vi274
Author(s):  
Gautham Gampa ◽  
Rajappa Kenchappa ◽  
Afroz Mohammad ◽  
Karen Parrish ◽  
Minjee Kim ◽  
...  

Abstract Glioblastoma, the most common and lethal of brain tumors, is both highly invasive and proliferative. This allows tumor cells to infiltrate into regions of the brain with an intact blood brain barrier and be protected from effective therapeutics. Thus, an ideal glioblastoma therapy needs to target cellular components that drive both invasion and proliferation, with inhibitors that penetrate the blood brain barrier. The mitotic kinesin KIF11 meets these criteria and it can be targeted with ispinesib, a highly specific small molecule inhibitor. However, to be effective, ispinesib needs to cross the blood brain barrier and be retained within brain long enough to target glioblastoma cells when they are vulnerable, during mitosis.. We have examined the factors that affect distribution of ispinesib to both brain and glioblastoma. We find that delivery of ispinesib is limited by P-gp and Bcrp-mediated drug efflux at the blood brain barrier. Consequently, ispinesib levels are significantly lower in the infiltrative tumor margin relative to the tumor core, where the blood brain barrier is defective. We also show that elacridar—an inhibitor of the P-gp and Brcp efflux transporters—enhances delivery of ispinesib, and that co-administration of ispinesib with elacridar markedly slows tumor proliferation and prolongs survival in a mouse model of this disease. These results demonstrate the feasibility and efficacy of combining a potentially ideal therapeutic with a compound that enhances brain retention of this therapeutic, and provides support for utilizing this approach in clinical investigations of KIF11 inhibitors in GBM.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Taylor E. Senay ◽  
Jessica L. Ferrell ◽  
Filip G. Garrett ◽  
Taylor M. Albrecht ◽  
Jooyoung Cho ◽  
...  

ABSTRACT Listeria monocytogenes is thought to colonize the brain using one of three mechanisms: direct invasion of the blood-brain barrier, transportation across the barrier by infected monocytes, and axonal migration to the brain stem. The first two pathways seem to occur following unrestricted bacterial growth in the blood and thus have been linked to immunocompromise. In contrast, cell-to-cell spread within nerves is thought to be mediated by a particular subset of neurotropic L. monocytogenes strains. In this study, we used a mouse model of foodborne transmission to evaluate the neurotropism of several L. monocytogenes isolates. Two strains preferentially colonized the brain stems of BALB/cByJ mice 5 days postinfection and were not detectable in blood at that time point. In contrast, infection with other strains resulted in robust systemic infection of the viscera but no dissemination to the brain. Both neurotropic strains (L2010-2198, a human rhombencephalitis isolate, and UKVDL9, a sheep brain isolate) typed as phylogenetic lineage III, the least characterized group of L. monocytogenes. Neither of these strains encodes InlF, an internalin-like protein that was recently shown to promote invasion of the blood-brain barrier. Acute neurologic deficits were observed in mice infected with the neurotropic strains, and milder symptoms persisted for up to 16 days in some animals. These results demonstrate that neurotropic L. monocytogenes strains are not restricted to any one particular lineage and suggest that the foodborne mouse model of listeriosis can be used to investigate the pathogenic mechanisms that allow L. monocytogenes to invade the brain stem. IMPORTANCE Progress in understanding the two naturally occurring central nervous system (CNS) manifestations of listeriosis (meningitis/meningoencephalitis and rhombencephalitis) has been limited by the lack of small animal models that can readily distinguish between these distinct infections. We report here that certain neurotropic strains of Listeria monocytogenes can spread to the brains of young otherwise healthy mice and cause neurological deficits without causing a fatal bacteremia. The novel strains described here fall within phylogenetic lineage III, a small collection of L. monocytogenes isolates that have not been well characterized to date. The animal model reported here mimics many features of human rhombencephalitis and will be useful for studying the mechanisms that allow L. monocytogenes to disseminate to the brain stem following natural foodborne transmission.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 405
Author(s):  
Andrei Molotkov ◽  
Patrick Carberry ◽  
Martin A. Dolan ◽  
Simon Joseph ◽  
Sidney Idumonyi ◽  
...  

Glioblastoma (GBM) is the most common primary adult brain malignancy with an extremely poor prognosis and a median survival of fewer than two years. A key reason for this high mortality is that the blood–brain barrier (BBB) significantly restricts systemically delivered therapeutics to brain tumors. High-intensity focused ultrasound (HIFU) with microbubbles is a methodology being used in clinical trials to noninvasively permeabilize the BBB for systemic therapeutic delivery to GBM. Topotecan is a topoisomerase inhibitor used as a chemotherapeutic agent to treat ovarian and small cell lung cancer. Studies have suggested that topotecan can cross the BBB and can be used to treat brain metastases. However, pharmacokinetic data demonstrated that topotecan peak concentration in the brain extracellular fluid after systemic injection was ten times lower than in the blood, suggesting less than optimal BBB penetration by topotecan. We hypothesize that HIFU with microbubbles treatment can open the BBB and significantly increase topotecan concentration in the brain. We radiolabeled topotecan with 11C and acquired static and dynamic positron emission tomography (PET) scans to quantify [11C] topotecan uptake in the brains of normal mice and mice after HIFU treatment. We found that HIFU treatments significantly increased [11C] topotecan brain uptake. Moreover, kinetic analysis of the [11C] topotecan dynamic PET data demonstrated a substantial increase in [11C] topotecan volume of distribution in the brain. Furthermore, we found a decrease in [11C] topotecan brain clearance, confirming the potential of HIFU to aid in the delivery of topotecan through the BBB. This opens the potential clinical application of [11C] topotecan as a tool to predict topotecan loco-regional brain concentration in patients with GBMs undergoing experimental HIFU treatments.


2018 ◽  
Vol 25 (9) ◽  
pp. 1073-1089 ◽  
Author(s):  
Santiago Vilar ◽  
Eduardo Sobarzo-Sanchez ◽  
Lourdes Santana ◽  
Eugenio Uriarte

Background: Blood-brain barrier transport is an important process to be considered in drug candidates. The blood-brain barrier protects the brain from toxicological agents and, therefore, also establishes a restrictive mechanism for the delivery of drugs into the brain. Although there are different and complex mechanisms implicated in drug transport, in this review we focused on the prediction of passive diffusion through the blood-brain barrier. Methods: We elaborated on ligand-based and structure-based models that have been described to predict the blood-brain barrier permeability. Results: Multiple 2D and 3D QSPR/QSAR models and integrative approaches have been published to establish quantitative and qualitative relationships with the blood-brain barrier permeability. We explained different types of descriptors that correlate with passive diffusion along with data analysis methods. Moreover, we discussed the applicability of other types of molecular structure-based simulations, such as molecular dynamics, and their implications in the prediction of passive diffusion. Challenges and limitations of experimental measurements of permeability and in silico predictive methods were also described. Conclusion: Improvements in the prediction of blood-brain barrier permeability from different types of in silico models are crucial to optimize the process of Central Nervous System drug discovery and development.


2020 ◽  
Vol 26 (37) ◽  
pp. 4721-4737 ◽  
Author(s):  
Bhumika Kumar ◽  
Mukesh Pandey ◽  
Faheem H. Pottoo ◽  
Faizana Fayaz ◽  
Anjali Sharma ◽  
...  

Parkinson’s disease is one of the most severe progressive neurodegenerative disorders, having a mortifying effect on the health of millions of people around the globe. The neural cells producing dopamine in the substantia nigra of the brain die out. This leads to symptoms like hypokinesia, rigidity, bradykinesia, and rest tremor. Parkinsonism cannot be cured, but the symptoms can be reduced with the intervention of medicinal drugs, surgical treatments, and physical therapies. Delivering drugs to the brain for treating Parkinson’s disease is very challenging. The blood-brain barrier acts as a highly selective semi-permeable barrier, which refrains the drug from reaching the brain. Conventional drug delivery systems used for Parkinson’s disease do not readily cross the blood barrier and further lead to several side-effects. Recent advancements in drug delivery technologies have facilitated drug delivery to the brain without flooding the bloodstream and by directly targeting the neurons. In the era of Nanotherapeutics, liposomes are an efficient drug delivery option for brain targeting. Liposomes facilitate the passage of drugs across the blood-brain barrier, enhances the efficacy of the drugs, and minimize the side effects related to it. The review aims at providing a broad updated view of the liposomes, which can be used for targeting Parkinson’s disease.


2020 ◽  
Vol 26 (13) ◽  
pp. 1448-1465 ◽  
Author(s):  
Jozef Hanes ◽  
Eva Dobakova ◽  
Petra Majerova

Tauopathies are neurodegenerative disorders characterized by the deposition of abnormal tau protein in the brain. The application of potentially effective therapeutics for their successful treatment is hampered by the presence of a naturally occurring brain protection layer called the blood-brain barrier (BBB). BBB represents one of the biggest challenges in the development of therapeutics for central nervous system (CNS) disorders, where sufficient BBB penetration is inevitable. BBB is a heavily restricting barrier regulating the movement of molecules, ions, and cells between the blood and the CNS to secure proper neuronal function and protect the CNS from dangerous substances and processes. Yet, these natural functions possessed by BBB represent a great hurdle for brain drug delivery. This review is concentrated on summarizing the available methods and approaches for effective therapeutics’ delivery through the BBB to treat neurodegenerative disorders with a focus on tauopathies. It describes the traditional approaches but also new nanotechnology strategies emerging with advanced medical techniques. Their limitations and benefits are discussed.


2021 ◽  
Vol 22 (3) ◽  
pp. 1231
Author(s):  
Ihab M. Abdallah ◽  
Kamal M. Al-Shami ◽  
Euitaek Yang ◽  
Amal Kaddoumi

In Alzheimer’s disease (AD), several studies have reported blood-brain barrier (BBB) breakdown with compromised function. P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are transport proteins localized at the BBB luminal membrane and play an important role in the clearance of amyloid-β (Aβ). The purpose of this study was to investigate the effect of pharmacological inhibition of Aβ efflux transporters on BBB function and Aβ accumulation and related pathology. Recently, we have developed an in vitro high-throughput screening assay to screen for compounds that modulate the integrity of a cell-based BBB model, which identified elacridar as a disruptor of the monolayer integrity. Elacridar, an investigational compound known for its P-gp and BCRP inhibitory effect and widely used in cancer research. Therefore, it was used as a model compound for further evaluation in a mouse model of AD, namely TgSwDI. TgSwDI mouse is also used as a model for cerebral amyloid angiopathy (CAA). Results showed that P-gp and BCRP inhibition by elacridar disrupted the BBB integrity as measured by increased IgG extravasation and reduced expression of tight junction proteins, increased amyloid deposition due to P-gp, and BCRP downregulation and receptor for advanced glycation end products (RAGE) upregulation, increased CAA and astrogliosis. Further studies revealed the effect was mediated by activation of NF-κB pathway. In conclusion, results suggest that BBB disruption by inhibiting P-gp and BCRP exacerbates AD pathology in a mouse model of AD, and indicate that therapeutic drugs that inhibit P-gp and BCRP could increase the risk for AD.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 892
Author(s):  
Elisa L. J. Moya ◽  
Elodie Vandenhaute ◽  
Eleonora Rizzi ◽  
Marie-Christine Boucau ◽  
Johan Hachani ◽  
...  

Central nervous system (CNS) diseases are one of the top causes of death worldwide. As there is a difficulty of drug penetration into the brain due to the blood–brain barrier (BBB), many CNS drugs treatments fail in clinical trials. Hence, there is a need to develop effective CNS drugs following strategies for delivery to the brain by better selecting them as early as possible during the drug discovery process. The use of in vitro BBB models has proved useful to evaluate the impact of drugs/compounds toxicity, BBB permeation rates and molecular transport mechanisms within the brain cells in academic research and early-stage drug discovery. However, these studies that require biological material (animal brain or human cells) are time-consuming and involve costly amounts of materials and plastic wastes due to the format of the models. Hence, to adapt to the high yields needed in early-stage drug discoveries for compound screenings, a patented well-established human in vitro BBB model was miniaturized and automated into a 96-well format. This replicate met all the BBB model reliability criteria to get predictive results, allowing a significant reduction in biological materials, waste and a higher screening capacity for being extensively used during early-stage drug discovery studies.


Sign in / Sign up

Export Citation Format

Share Document