scholarly journals Intercept-Resend Emulation Attacks against a Continuous-Variable Quantum Authentication Protocol with Physical Unclonable Keys

Cryptography ◽  
2019 ◽  
Vol 3 (4) ◽  
pp. 25 ◽  
Author(s):  
Lukas Fladung ◽  
Georgios M. Nikolopoulos ◽  
Gernot Alber ◽  
Marc Fischlin

Optical physical unclonable keys are currently considered to be rather promising candidates for the development of entity authentication protocols, which offer security against both classical and quantum adversaries. In this work, we investigate the robustness of a continuous-variable protocol, which relies on the scattering of coherent states of light from the key, against three different types of intercept–resend emulation attacks. The performance of the protocol is analyzed for a broad range of physical parameters, and our results are compared to existing security bounds.

2005 ◽  
Vol 5 (1) ◽  
pp. 1-12
Author(s):  
P. Garcia-Fernandez ◽  
E. Fernandez-Martinez ◽  
E. Perez ◽  
D.J. Santos

We study the potential of general quantum operations, Trace-Preserving Completely-Positive Maps (TPCPs), as encoding and decoding mechanisms in quantum authentication protocols. The study shows that these general operations do not offer significant advantage over unitary encodings. We also propose a practical authentication protocol based on the use of two successive unitary encodings.


Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 289
Author(s):  
Georgios M. Nikolopoulos

Physical unclonable functions have been shown to be a useful resource of randomness for implementing various cryptographic tasks including entity authentication. All the related entity authentication protocols that have been discussed in the literature so far, either they are vulnerable to an emulation attack, or they are limited to short distances. Hence, quantum-safe remote entity authentication over large distances remains an open question. In the first part of this work, we discuss the requirements that an entity authentication protocol has to offer, to be useful for remote entity authentication in practice. Subsequently, we propose a protocol, which can operate over large distances, and offers security against both classical and quantum adversaries. The proposed protocol relies on standard techniques, it is fully compatible with the infrastructure of existing and future photonic networks, and it can operate in parallel with other quantum protocols, including QKD protocols.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Filip Rozpędek ◽  
Kyungjoo Noh ◽  
Qian Xu ◽  
Saikat Guha ◽  
Liang Jiang

AbstractWe propose an architecture of quantum-error-correction-based quantum repeaters that combines techniques used in discrete- and continuous-variable quantum information. Specifically, we propose to encode the transmitted qubits in a concatenated code consisting of two levels. On the first level we use a continuous-variable GKP code encoding the qubit in a single bosonic mode. On the second level we use a small discrete-variable code. Such an architecture has two important features. Firstly, errors on each of the two levels are corrected in repeaters of two different types. This enables for achieving performance needed in practical scenarios with a reduced cost with respect to an architecture for which all repeaters are the same. Secondly, the use of continuous-variable GKP code on the lower level generates additional analog information which enhances the error-correcting capabilities of the second-level code such that long-distance communication becomes possible with encodings consisting of only four or seven optical modes.


Author(s):  
Gregor V. Bochmann ◽  
Eric Zhen Zhang

The requirements for an authentication infrastructure for electronic commerce are explained by identifying the partners involved in e-commerce transactions and the trust relationships required. Related security requirements are also explained, such as authentication, access rights, payment credentials, anonymity (in certain cases), and privacy and integrity of message exchanges. Then several general authentication schemes and specific protocols are reviewed and their suitability for mobile users is discussed. Finally, an improved authentication protocol is presented which can provide trust relationships for mobile e-commerce users. Its analysis and comparison with other proposed authentication protocols indicate that it is a good candidate for use in the context of mobile e-commerce.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 276-277
Author(s):  
Hanindyo Kuncarayakti

AbstractIntegral field spectroscopy of nearby supernova sites within ~30 Mpc have been obtained using multiple IFU spectrographs in Hawaii and Chile. This technique enables both spatial and spectral information of the explosion sites to be acquired simultaneously, thus providing the identification of the parent stellar population of the supernova progenitor and the estimates for its physical parameters including age and metallicity via the spectrum. While this work has mainly been done in the optical wavelengths using instruments such as VIMOS, GMOS, and MUSE, a near-infrared approach has also been carried out using the AO-assisted SINFONI. By studying the supernova parent stellar population, we aim to characterize the mass and metallicity of the progenitors of different types of supernovae.


Sign in / Sign up

Export Citation Format

Share Document