Design of a Characterisation Environment for a MEMS Ultrasound Sensor under Guided Ultrasonic Wave Excitation
Microelectromechanical Systems (MEMS) are a current subject of research in the field of structural health monitoring (SHM) for the detection of guided ultrasonic waves (GUW). The dispersive behaviour of GUW, reflections and other kinds of wave interactions might result in a complex wave field that requires a specific analysis and interpretation of the recorded signals. This makes it difficult or impossible to interpret the sensor signal regarding the distinguishability between the sensor transfer behaviour and the specific behaviour of the test structure. Therefore, a proper application-suited design of the tested structure is crucial for reliable sensor characterisation. The aim of this contribution is the design and evaluation of a setup that allows a representative situation for a GUW application and provides a defined vibration energy for a MEMS sensor characterisation. Parameters such as the specimen’s geometry, material properties and the sensor specifications are taken into account as well as the experimental settings of the GUW excitation. Furthermore, the requirements for the test application case are discussed.