Mapping Fuzzy Energy Management Strategy for PEM Fuel Cell–Battery–Supercapacitor Hybrid Excavator
By replacing conventional supplies such as fossil fuels or internal combustion engines (ICEs), this paper presents a new configuration of hybrid power sources (HPS) based on the integration of a proton-exchange membrane fuel cell (PEMFC) with batteries (BATs) and supercapacitors (SCs) for hydraulic excavators (HEs). In contrast to conventional architectures, the PEMFC in this study functions as the main power supply, whereas the integrated BAT–SC is considered as an auxiliary buffer. Regarding shortcomings existing in the previous approaches, an innovative energy management strategy (EMS) was designed using a new mapping fuzzy logic control (MFLC) for appropriate power distribution. Comparisons between the proposed strategy with available approaches are conducted to satisfy several driving cycles with different load demands and verify the strategy’s effectiveness. Based on the simulation results, the efficiency of the PEMFC when using the MFLS algorithm increased up to 47% in comparison with the conventional proposed EMS and other approaches. With the proposed strategy, the HPS can be guaranteed to not only sufficiently support power to the system even when the endurance process or high peak power is required, but also extend the lifespan of the devices and achieves high efficiency.