scholarly journals Stratigraphically Controlled Stress Variations at the Hydraulic Fracture Test Site-1 in the Midland Basin, TX

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8328
Author(s):  
Arjun Kohli ◽  
Mark Zoback

We investigated the relationship between stratigraphy, stress, and microseismicity at the Hydraulic Fracture Test Site-1. The site comprises two sets of horizontal wells in the Wolfcamp shale and a deviated well drilled after hydraulic fracturing. Regional stresses indicate normal/strike-slip faulting with E-W compression. Stress measurements in vertical and horizontal wells show that the minimum principal stress varies with depth. Strata with high clay and organic content show high values of the least compressive stress, consistent with the theory of viscous stress relaxation. By integrating data from core, logs, and the hydraulic fracturing stages, we constructed a stress profile for the Wolfcamp sequence, which predicts how much pressure is required for hydraulic fracture growth. We applied the results to fracture orientation data from image logs to determine the population of pre-existing faults that are expected to slip during stimulation. We also determined microseismic focal plane mechanisms and found slip on steeply dipping planes striking NW, consistent with the orientations of potentially active faults predicted by the stress model. This case study represents a general approach for integrating stress measurements and rock properties to predict hydraulic fracture growth and the characteristics of injection-induced microseismicity.

2021 ◽  
Author(s):  
Ivan Krasnov ◽  
Oleg Butorin ◽  
Igor Sabanchin ◽  
Vasiliy Kim ◽  
Sergey Zimin ◽  
...  

Abstract With the development of drilling and well completion technologies, multi-staged hydraulic fracturing (MSF) in horizontal wells has established itself as one of the most effective methods for stimulating production in fields with low permeability properties. In Eastern Siberia, this technology is at the pilot project stage. For example, at the Bolshetirskoye field, these works are being carried out to enhance the productivity of horizontal wells by increasing the connectivity of productive layers in a low- and medium- permeable porous-cavernous reservoir. However, different challenges like high permeability heterogeneity and the presence of H2S corrosive gases setting a bar higher for the requirement of the well construction design and well monitoring to achieve the maximum oil recovery factor. At the same time, well and reservoir surveillance of different parameters, which may impact on the efficiency of multi-stage hydraulic fracturing and oil contribution from each hydraulic fracture, remains a challenging and urgent task today. This article discusses the experience of using tracer technology for well monitoring with multi-stage hydraulic fracturing to obtain information on the productivity of each hydraulic fracture separately.


Author(s):  
Gustavo A. Ugueto ◽  
Magdalena Wojtaszek ◽  
Paul T. Huckabee ◽  
Alexei A. Savitski ◽  
Artur Guzik ◽  
...  

2021 ◽  
Author(s):  
Debotyam Maity ◽  
Jordan Ciezobka

Abstract In this case study, we apply a novel fracture imaging and interpretation workflow to take a systematic look at hydraulic fractures captured during thorugh fracture coring at the Hydraulic Fracturing Test Site (HFTS) in Midland Basin. Digital fracture maps rendered using high resolution 3D laser scans are analyzed for fracture morphology and roughness. Analysis of hydraulic fracture faces show that the roughness varies systematically in clusters with average cluster separation of approximately 20' along the core. While isolated smooth hydraulic fractures are observed in the dataset, very rough fractures are found to be accompanied by proximal smoother fractures. Roughness distribution also helps understand the effect of stresses on fracture distribution. Locally, fracture roughness seems to vary with fracture orientations indicating possible inter-fracture stress effects. At the scale of stage lengths however, we see evidence of inter-stage stress effects. We also observe fracture morphology being strongly driven by rock properties and changes in lithology. Identified proppant distribution along the cored interval is also correlated with roughness variations and we observe strong positive correlation between proppant concentrations and fracture roughness at the local scale. Finally, based on the observed distribution of hydraulic fracture properties, we propose a conceptual spatio-temporal model of fracture propagation which can help explain the hydraulic fracture roughness distribution and ties in other observations as well.


2021 ◽  
pp. 1-34
Author(s):  
Kevin L. McCormack ◽  
Mark D. Zoback ◽  
Wenhuan Kuang

We carried out a geomechanical study of three wells, one each in the Niobrara A, Niobrara C and Codell sandstone to investigate how the state of stress and stress variations with depth affect vertical hydraulic fracture growth and shear stimulation of pre-existing fractures. We demonstrate that the higher magnitudes of measured least principal stress values in the Niobrara A and C shales are the result of viscoplastic stress relaxation. Using a density log and a VTI velocity model developed to accurately locate the microseismic events, we theoretically calculated a continuous profile of the magnitude of the least principal stress with depth. This stress profile explains the apparent vertical hydraulic fracture growth as inferred from the well-constrained depths of associated microseismic events. Finally, we demonstrate that because of the upward propagation of hydraulic fractures from the Niobrara C to the Niobrara A, the latter formation experienced considerably more shear stimulation, which may contribute to the greater production of oil and gas from that formation.


1992 ◽  
Author(s):  
B.M. Robinson ◽  
F.E. Syfan ◽  
S.A. Holditch

SPE Journal ◽  
2017 ◽  
Vol 23 (01) ◽  
pp. 172-185
Author(s):  
V.. Pandurangan ◽  
A.. Peirce ◽  
Z. R. Chen ◽  
R. G. Jeffrey

Summary A novel method to map asymmetric hydraulic-fracture propagation using tiltmeter measurements is presented. Hydraulic fracturing is primarily used for oil-and-gas well stimulation, and is also applied to precondition rock before mining. The geometry of the developing fracture is often remotely monitored with tiltmeters—instruments that are able to remotely measure the fracture-induced deformations. However, conventional analysis of tiltmeter data is limited to determining the fracture orientation and volume. The objective of this work is to detect asymmetric fracture growth during a hydraulic-fracturing treatment, which will yield height-growth information for vertical fracture growth and horizontal asymmetry for lateral fracture growth or detect low preconditioning-treatment efficiency in mining. The technique proposed here uses the extended Kalman filter (EKF) to assimilate tilt data into a hydraulic-fracture model to track the geometry of the fracture front. The EKF uses the implicit level set algorithm (ILSA) as the dynamic model to locate the boundary of the fracture by solving the coupled fluid-flow/fracture-propagation equations, and uses the Okada half-space solution as the observation model (forward model) to relate the fracture geometry to the measured tilts. The 3D fracture model uses the Okada analytical expressions for the displacements and tilts caused by piecewise constant-displacement discontinuity elements to discretize the fracture area. The proposed technique is first validated by a numerical example in which synthetic tilt data are generated by assuming a confining-stress gradient to generate asymmetric fracture growth. The inversion is carried in a two-step process in which the fracture dip and dip direction are first obtained with an elliptical fracture-forward model, and then the ILSA-EKF model is used to obtain the fracture footprint by fixing the dip and dip direction to the values obtained in the first step. Finally, the ILSA-EKF scheme is used to predict the fracture width and geometry evolution from real field data, which are compared with intersection data obtained by temperature and pressure monitoring in offset boreholes. The results show that the procedure is able to satisfactorily capture fracture growth and asymmetry even though the field data contain significant noise, the tiltmeters are relatively far from the fracture, and the dynamic model contains significant “unmodeled dynamics” such as stress anisotropy, material heterogeneity, fluid leakoff into the formation, and other physical processes that have not been explicitly accounted for in the dynamic ILSA model. However, all the physical processes that affect the tilt signal are incorporated by the EKF when the tilt measurements are used to obtain the maximum likelihood estimates of the fracture widths and geometry.


Sign in / Sign up

Export Citation Format

Share Document