scholarly journals Ammonia, Hydrogen Sulfide, and Greenhouse Gas Emissions from Lab-Scaled Manure Bedpacks with and without Aluminum Sulfate Additions

Environments ◽  
2019 ◽  
Vol 6 (10) ◽  
pp. 108 ◽  
Author(s):  
Spiehs ◽  
Woodbury ◽  
Parker

The poultry industry has successfully used aluminum sulfate (alum) as a litter amendment to reduce NH3 emissions from poultry barns, but alum has not been evaluated for similar uses in cattle facilities. A study was conducted to measure ammonia (NH3), greenhouse gases (GHG), and hydrogen sulfide (H2S) emissions from lab-scaled bedded manure packs over a 42-day period. Two frequencies of application (once or weekly) and four concentrations of alum (0, 2.5, 5, and 10% by mass) were evaluated. Frequency of alum application was either the entire treatment of alum applied on Day 0 (once) or 16.6% of the total alum mass applied each week for six weeks. Ammonia emissions were reduced when 10% alum was used, but H2S emissions increased as the concentration of alum increased in the bedded packs. Nitrous oxide emissions were not affected by alum treatment. Methane emissions increased as the concentration of alum increased in the bedded packs. Carbon dioxide emissions were highest when 5% alum was applied and lowest when 0% alum was used. Results of this study indicate that 10% alum is needed to effectively reduce NH3 emissions, but H2S and methane emissions may increase when this concentration of alum is used.

Author(s):  
Syeda Anam Hassan ◽  
Misbah Nosheen

No one can deny the progression and innovation in the aviation transportation collected at national and international level. But the accountancy of the impact of air transportation on environmental degradation is naive and emerging trend of the current era. The air transportation versus environment is the key contribution to the literature that is solely conducted for Pakistan first time in this context. The objective of this research is to compute the impact of air transportation on carbon dioxide emissions, nitrous emissions and methane emissions separately in the three models by applying ARDL bound test approach during 1990 to 2017. The result depicts significant and positive relation of air transportation (carriage) to carbon dioxide emissions (0.77), nitrous emissions (0.20) and methane emissions (0.38) in long-run. The short-run results infer that the air transportation (passenger) has significantly positive relation to carbon dioxide emissions (0.278), nitrous emissions (0.207), and methane emissions (0.080). The econometric outcomes show the significant and direct relation to transportation (both passenger and cargo) to carbon dioxide, methane, and nitrous oxide emissions in short and long-run. Moreover, per capita GDP, population density, and energy demand also significantly affect the environment showing significant and positive coefficients to all three categories (carbon dioxide, methane, and nitrous oxide) of emission. In case of Pakistan, FDI and trade for this duration didn’t significantly contribute to the CO2, NO2, and methane emissions. Since the last decade the economic issues of Pakistan like terrorism, political instability, energy crises, and poor management along with the worst performance by tertiary sectors have severely hit the economy, and as a result, the FDI and trade sector has tormented in a substantial proportion. Finally, pairwise Granger causation also supports the short and long-run consequences. The outcomes suggested that the fuel-efficient energy use and technological diversification in the transportation sector are essential to mitigate the degrading environmental emissions.


2020 ◽  
pp. 073112142093773
Author(s):  
Steven Andrew Mejia

Scholars have long inquired the anthropogenic causes of greenhouse gas emissions. The majority of empirical work focuses on carbon dioxide and methane emissions, but limited attention is paid to nitrous oxide emissions. This is a crucial omission as nitrous oxide emissions are an extremely potent greenhouse gas and trigger ozone-depleting reactions upon reaching the atmosphere. Using a fixed effects panel regression of 106 developing countries, I estimate the effect of foreign direct investment dependence on nitrous oxide emissions. I find foreign capital dependency is positively associated with nitrous oxide emissions, supporting a refined ecostructural theory of foreign direct investment dependence. This analysis highlights the need for social scientists to consider the environmental impacts of the transnational organization of production beyond carbon dioxide emissions and methane emissions.


2020 ◽  
Author(s):  
Robin D. Lamboll ◽  
Zebedee R. J. Nicholls ◽  
Jarmo S. Kikstra ◽  
Malte Meinshausen ◽  
Joeri Rogelj

Abstract. Integrated assessment models (IAMs) project future anthropogenic emissions for input into climate models. However, the full list of climate-relevant emissions is lengthy and most IAMs do not model all of them. Here we present silicone, an open-source Python package which infers anthropogenic emissions of missing species based on other known emissions. For example, it can infer nitrous oxide emissions in one scenario based on carbon dioxide emissions from that scenario plus the relationship between nitrous oxide and carbon dioxide emissions in other scenarios. This broadens the range of IAMs available for exploring projections of future climate change. Silicone forms part of the open-source pipeline for assessments of the climate implications of IAMs by the IAM consortium (IAMC). A variety of infilling options are outlined and their suitability for different cases are discussed. The code and notebooks explaining details of the package and how to use it are available from the GitHub repository, https://github.com/GranthamImperial/silicone. There is an additional repository showing uses of the code to complement existing research at https://github.com/GranthamImperial/silicone_examples.


2020 ◽  
Vol 13 (11) ◽  
pp. 5259-5275
Author(s):  
Robin D. Lamboll ◽  
Zebedee R. J. Nicholls ◽  
Jarmo S. Kikstra ◽  
Malte Meinshausen ◽  
Joeri Rogelj

Abstract. Integrated assessment models (IAMs) project future anthropogenic emissions which can be used as input for climate models. However, the full list of climate-relevant emissions is lengthy and most IAMs do not model all of them. Here we present Silicone, an open-source Python package which infers anthropogenic emissions of unmodelled species based on other reported emissions projections. For example, it can infer nitrous oxide emissions in one scenario based on carbon dioxide emissions from that scenario plus the relationship between nitrous oxide and carbon dioxide emissions found in other scenarios. Infilling broadens the range of IAMs available for exploring projections of future climate change, and hence Silicone forms part of the open-source pipeline for assessments of the climate implications of IAM scenarios, led by the Integrated Assessment Modelling Consortium (IAMC). This paper presents a variety of infilling options and outlines their suitability for different cases. We recommend certain infilling techniques as good defaults but emphasise that considering the specifics of the model being infilled will produce better results. We demonstrate the package's utility with three examples: infilling all required gases for a pathway with data for only one emission species, splitting up a Kyoto emissions total into separate gases, and complementing a set of idealised emissions curves to provide a complete, consistent emissions portfolio. The code and notebooks explaining details of the package and how to use it are available on GitHub (https://github.com/GranthamImperial/silicone, last access: 2 November 2020). The repository with this paper's examples and uses of the code to complement existing research is available at https://github.com/GranthamImperial/silicone_examples (last access: 2 November 2020).


2021 ◽  
Vol 13 (8) ◽  
pp. 4224
Author(s):  
Jian Xue ◽  
Zeeshan Rasool ◽  
Raima Nazar ◽  
Ahmad Imran Khan ◽  
Shaukat Hussain Bhatti ◽  
...  

Widespread interference of human activities has resulted in major environmental problems, including pollution, global warming, land degradation, and biodiversity loss, directly affecting the sustainability and quality of the environment and ecosystem. The study aims to address the impact of the extraction of natural resources and globalization on the environmental quality in the South Asian countries for the period 1991–2018. A new methodology Dynamic Common Correlated Effects is used to deal with cross-sectional dependence. Most previous studies use only carbon dioxide emissions, which is an inadequate measure of environmental quality. Besides carbon dioxide emissions, we have used other greenhouse gas emissions like nitrous oxide and methane emissions with a new indicator, “ecological footprint”. Long-run estimation results indicate a positive and significant relationship of natural resources with all greenhouse gas emissions and a negative association with the ecological footprint. Globalization shows a negative association with carbon dioxide emissions and nitrous oxide emissions and a positive relationship with the ecological footprint. Institutional performance is negatively correlated with carbon dioxide emissions, methane emissions, and ecological footprint while positively associated with nitrous oxide emissions. The overall findings highlight the pertinence of reducing greenhouse gas emissions and ecological footprint, proper utilizing of natural resources, enhancing globalization, and improving institutional performance to ensure environmental sustainability.


2021 ◽  
Vol 156 ◽  
pp. 108197
Author(s):  
Hollie E. Emery ◽  
John H. Angell ◽  
Akaash Tawade ◽  
Robinson W. Fulweiler

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


2008 ◽  
Vol 88 (2) ◽  
pp. 163-174 ◽  
Author(s):  
C F Drury ◽  
X M Yang ◽  
W D Reynolds ◽  
N B McLaughlin

It is well established that nitrous oxide (N2O) and carbon dioxide (CO2) emissions from agricultural land are influenced by the type of crop grown, the form and amount of nitrogen (N) applied, and the soil and climatic conditions under which the crop is grown. Crop rotation adds another dimension that is often overlooked, however, as the crop residue being decomposed and supplying soluble carbon to soil biota is usually from a different crop than the crop that is currently growing. Hence, the objective of this study was to compare the influence of both the crop grown and the residues from the preceding crop on N2O and CO2 emissions from soil. In particular, N2O and CO2 emissions from monoculture cropping of corn, soybean and winter wheat were compared with 2 -yr and 3-yr crop rotations (corn-soybean or corn-soybean-winter wheat). Each phase of the rotation was measured each year. Averaged over three growing seasons (from April to October), annual N2O emissions were about 3.1 to 5.1 times greater in monoculture corn (2.62 kg N ha-1) compared with either monoculture soybean (0.84 kg N ha-1) or monoculture winter wheat (0.51 kg N ha-1). This was due in part to the higher inorganic N levels in the soil resulting from the higher N application rate with corn (170 kg N ha-1) than winter wheat (83 kg N ha-1) or soybean (no N applied). Further, the previous crop also influenced the extent of N2O emissions in the current crop year. When corn followed corn, the average N2O emissions (2.62 kg N ha-1) were about twice as high as when corn followed soybean (1.34 kg N ha-1) and about 60% greater than when corn followed winter wheat (1.64 kg N ha-1). Monoculture winter wheat had about 45% greater CO2 emissions than monoculture corn or 51% greater emissions than monoculture soybean. In the corn phase, CO2 emissions were greater when the previous crop was winter wheat (5.03 t C ha-1) than when it was soybean (4.20 t C ha-1) or corn (3.91 t C ha-1). Hence, N2O and CO2 emissions from agricultural fields are influenced by both the current crop and the previous crop, and this should be accounted for in both estimates and forecasts of the emissions of these important greenhouse gases. Key words: Denitrification, soil respiration, rotation, crop residue


2021 ◽  
Vol 13 (3) ◽  
pp. 1014
Author(s):  
Liza Nuriati Lim Kim Choo ◽  
Osumanu Haruna Ahmed ◽  
Nik Muhamad Nik Majid ◽  
Zakry Fitri Abd Aziz

Burning pineapple residues on peat soils before pineapple replanting raises concerns on hazards of peat fires. A study was conducted to determine whether ash produced from pineapple residues could be used to minimize carbon dioxide (CO2) and nitrous oxide (N2O) emissions in cultivated tropical peatlands. The effects of pineapple residue ash fertilization on CO2 and N2O emissions from a peat soil grown with pineapple were determined using closed chamber method with the following treatments: (i) 25, 50, 70, and 100% of the suggested rate of pineapple residue ash + NPK fertilizer, (ii) NPK fertilizer, and (iii) peat soil only. Soils treated with pineapple residue ash (25%) decreased CO2 and N2O emissions relative to soils without ash due to adsorption of organic compounds, ammonium, and nitrate ions onto the charged surface of ash through hydrogen bonding. The ability of the ash to maintain higher soil pH during pineapple growth primarily contributed to low CO2 and N2O emissions. Co-application of pineapple residue ash and compound NPK fertilizer also improves soil ammonium and nitrate availability, and fruit quality of pineapples. Compound NPK fertilizers can be amended with pineapple residue ash to minimize CO2 and N2O emissions without reducing peat soil and pineapple productivity.


Sign in / Sign up

Export Citation Format

Share Document