scholarly journals Pineapple Residue Ash Reduces Carbon Dioxide and Nitrous Oxide Emissions in Pineapple Cultivation on Tropical Peat Soils at Saratok, Malaysia

2021 ◽  
Vol 13 (3) ◽  
pp. 1014
Author(s):  
Liza Nuriati Lim Kim Choo ◽  
Osumanu Haruna Ahmed ◽  
Nik Muhamad Nik Majid ◽  
Zakry Fitri Abd Aziz

Burning pineapple residues on peat soils before pineapple replanting raises concerns on hazards of peat fires. A study was conducted to determine whether ash produced from pineapple residues could be used to minimize carbon dioxide (CO2) and nitrous oxide (N2O) emissions in cultivated tropical peatlands. The effects of pineapple residue ash fertilization on CO2 and N2O emissions from a peat soil grown with pineapple were determined using closed chamber method with the following treatments: (i) 25, 50, 70, and 100% of the suggested rate of pineapple residue ash + NPK fertilizer, (ii) NPK fertilizer, and (iii) peat soil only. Soils treated with pineapple residue ash (25%) decreased CO2 and N2O emissions relative to soils without ash due to adsorption of organic compounds, ammonium, and nitrate ions onto the charged surface of ash through hydrogen bonding. The ability of the ash to maintain higher soil pH during pineapple growth primarily contributed to low CO2 and N2O emissions. Co-application of pineapple residue ash and compound NPK fertilizer also improves soil ammonium and nitrate availability, and fruit quality of pineapples. Compound NPK fertilizers can be amended with pineapple residue ash to minimize CO2 and N2O emissions without reducing peat soil and pineapple productivity.

2021 ◽  
Vol 13 (9) ◽  
pp. 4928
Author(s):  
Alicia Vanessa Jeffary ◽  
Osumanu Haruna Ahmed ◽  
Roland Kueh Jui Heng ◽  
Liza Nuriati Lim Kim Choo ◽  
Latifah Omar ◽  
...  

Farming systems on peat soils are novel, considering the complexities of these organic soil. Since peat soils effectively capture greenhouse gases in their natural state, cultivating peat soils with annual or perennial crops such as pineapples necessitates the monitoring of nitrous oxide (N2O) emissions, especially from cultivated peat lands, due to a lack of data on N2O emissions. An on-farm experiment was carried out to determine the movement of N2O in pineapple production on peat soil. Additionally, the experiment was carried out to determine if the peat soil temperature and the N2O emissions were related. The chamber method was used to capture the N2O fluxes daily (for dry and wet seasons) after which gas chromatography was used to determine N2O followed by expressing the emission of this gas in t ha−1 yr−1. The movement of N2O horizontally (832 t N2O ha−1 yr−1) during the dry period was higher than in the wet period (599 t N2O ha−1 yr−1) because of C and N substrate in the peat soil, in addition to the fertilizer used in fertilizing the pineapple plants. The vertical movement of N2O (44 t N2O ha−1 yr−1) was higher in the dry season relative to N2O emission (38 t N2O ha−1 yr−1) during the wet season because of nitrification and denitrification of N fertilizer. The peat soil temperature did not affect the direction (horizontal and vertical) of the N2O emission, suggesting that these factors are not related. Therefore, it can be concluded that N2O movement in peat soils under pineapple cultivation on peat lands occurs horizontally and vertically, regardless of season, and there is a need to ensure minimum tilling of the cultivated peat soils to prevent them from being an N2O source instead of an N2O sink.


Soil Systems ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 60
Author(s):  
Alexander H. Krichels ◽  
Emina Sipic ◽  
Wendy H. Yang

Topographic depressions in upland soils experience anaerobic conditions conducive for iron (Fe) reduction following heavy rainfall. These depressional areas can also accumulate reactive Fe compounds, carbon (C), and nitrate, creating potential hot spots of Fe-mediated carbon dioxide (CO2) and nitrous oxide (N2O) production. While there are multiple mechanisms by which Fe redox reactions can facilitate CO2 and N2O production, it is unclear what their cumulative effect is on CO2 and N2O emissions in depressional soils under dynamic redox. We hypothesized that Fe reduction and oxidation facilitate greater CO2 and N2O emissions in depressional compared to upslope soils in response to flooding. To test this, we amended upslope and depressional soils with Fe(II), Fe(III), or labile C and measured CO2 and N2O emissions in response to flooding. We found that depressional soils have greater Fe reduction potential, which can contribute to soil CO2 emissions during flooded conditions when C is not limiting. Additionally, Fe(II) addition stimulated N2O production, suggesting that chemodenitrification may be an important pathway of N2O production in depressions that accumulate Fe(II). As rainfall intensification results in more frequent flooding of depressional upland soils, Fe-mediated CO2 and N2O production may become increasingly important pathways of soil greenhouse gas emissions.


2021 ◽  
Vol 10 (2) ◽  
pp. e23910212427
Author(s):  
Vilmar Muller Júnior ◽  
Jucinei José Comin ◽  
Guilherme Wilbert Ferreira ◽  
Jorge Manuel Rodrigues Tavares ◽  
Rafael da Rosa Couto ◽  
...  

Nitrous oxide (N2O) is one of the main gases that contributes to the greenhouse effect. With a Global Warming Potential (GWP) 265 times greater than that of carbon dioxide (CO2), over a 100-year horizon, N2O also has the potential for the depreciation of the ozone layer. The activities related to agriculture and livestock are responsible for approximately 60% of the global anthropogenic emissions of this gas to the atmosphere. In Brazil, the sector corresponds to 37% of total emissions. The objectives of this review article were: (i) To verify which are the main processes involved in N2O emissions in soils fertilized with swine manure; (ii) What are the direct emissions on these soils under different management systems, and; (iii) What are the possible strategies for controlling and mitigating N2O emissions. Therefore, an exploratory and qualitative research of articles was carried out using the following keywords: óxido nitroso’, ‘nitrous oxide’, ‘N2O’, ‘nitrogênio’, ‘nitrogen’, ‘suínos, ‘pig, ‘swine’, ‘dejetos’, ‘manure’ and ‘slurry’. Effects of pig diet, manure treatment systems, presence of heavy metals in the soil and moisture content of manure on N2O emissions were verified. Therefore, we recommend integrated studies of the quantitative and qualitative impacts of the levels and sources of nitrogen in the animals' diets on N2O emissions after the application of these wastes to the soil. We also recommend studies related to the effects of copper and zinc contents added to the soil via swine manure on enzymes that catalyze the biotic denitrification process in the soil.


Author(s):  
Haojie Liu ◽  
Nicole Wrage-Mönnig ◽  
Bernd Lennartz

Abstract Nitrous oxide (N2O) is approximately 265 times more potent than carbon dioxide (CO2) in atmospheric warming. Degraded peatlands are important sources of N2O. The more a peat soil is degraded, the higher the N2O-N emissions from peat. In this study, soil bulk density was used as a proxy for peat degradation to predict N2O-N emissions. Here we report that the annual N2O-N emissions from European managed peatlands (EU-28) sum up to approximately 145 Gg N year−1. From the viewpoint of greenhouse gas emissions, highly degraded agriculturally used peatlands should be rewetted first to optimally reduce cumulative N2O-N emissions. Compared to a business-as-usual scenario (no peatland rewetting), rewetting of all drained European peatlands until 2050 using the suggested strategy reduces the cumulative N2O-N emissions by 70%. In conclusion, the status of peat degradation should be made a pivotal criterion in prioritising peatlands for restoration.


2017 ◽  
Vol 6 (3) ◽  
pp. 75
Author(s):  
Liza Nuriati Lim Kim Choo ◽  
Osumanu Haruna Ahmed

Draining of peatland for agriculture could affect the release of nitrous oxide into the atmosphere. Presently, there is dearth of information on soil nitrous oxide emission from tropical peat soils cultivated with pineapples. Lysimeter and closed chamber methods were used to quantify nitrous oxide emission from root respiration, microbial respiration, and oxidative peat decomposition under controlled water table condition. Treatments evaluated were: peat soil grown with pineapple, uncultivated peat soils, and bare peat soil fumigated with chloroform. Cultivation of Moris pineapple on drained peat soils resulted in the higher release of nitrous oxide emission (15.7 t N2O ha/yr), followed by fumigated peat soil with chloroform (14.3 t N2O ha/yr), and uncultivated peat soil (10.2 t N2O ha/yr). Soil nitrous oxide emission was affected by nitrate fertilization but emission was not affected by soil temperature nor soil moisture. 


2010 ◽  
Vol 7 (6) ◽  
pp. 8345-8379 ◽  
Author(s):  
N. Eickenscheidt ◽  
R. Brumme ◽  
E. Veldkamp

Abstract. The impact of atmospheric nitrogen (N) deposition on nitrous oxide (N2O) emissions in forest ecosystems is still unclear. The objective of our study was to investigate the direct contribution of N deposition to N2O emissions in temperate forests exposed to chronic high N deposition using a 15N labelling technique. In a Norway spruce stand (Picea abies) and in a beech stand (Fagus sylvatica) in the Solling, Germany, we added a low concentrated 15N-labelled ammoniumnitrate solution to simulate N deposition. Nitrous oxide fluxes and 15N isotope abundances in N2O were measured using the closed chamber method combined with 15N isotope analyses. Emissions of N2O were higher in the beech stand (2.6 ± 0.6 kg N ha−1 yr−1) than in the spruce stand (0.3 ± 0.1 kg N ha−1 yr−1). We observed a direct effect of N input on 15N2O emissions, which lasted less than three weeks and was mainly caused by denitrification. No progressive increase in 15N enrichment of N2O occurred over a one-year experiment, which we explained by immobilisation of deposited N. The annual emission factor for N2O from deposited N was 0.1% for the spruce stand and 0.6% for the beech stand. Standard methods used in the literature applied to the same stands grossly overestimated emission factors with values of up to 25%. Only 6–13% of the total N2O emissions were derived from direct N deposition. Whether the remaining emissions resulted from accumulated anthropogenic N deposition or native N, can not be distinguish with the applied methods. The 15N tracer technique represents a precise tool, which may improve estimates of the current contribution of N deposition on N2O emissions.


2016 ◽  
Author(s):  
Rose M. Smith ◽  
Sujay S. Kaushal ◽  
Jake J. Beaulieu ◽  
Michael J. Pennino ◽  
Claire Welty

Abstract. Streams and rivers are significant sources of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4), and watershed management can alter greenhouse gas (GHG) emissions from streams. GHG emissions from streams in agricultural watersheds have been investigated in numerous studies, but less is known about streams draining urban watersheds. We hypothesized that urban infrastructure significantly influences GHG dynamics along the urban watershed continuum, extending from engineered headwater flowpaths to larger streams. GHG concentrations and emissions were measured across streams draining a gradient of stormwater and sanitary infrastructure including: (1) complete stream burial, (2) in-line stormwater wetlands, (3) riparian/floodplain preservation, and (4) septic systems. Infrastructure categories significantly influenced drivers of GHG dynamics including carbon to nitrogen stoichiometry, dissolved oxygen, total dissolved nitrogen (TDN), and water temperature. These variables explained much of the statistical variation in nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) saturation in stream water (r2 = 0.78, 0.78, 0.50 respectively). N2O saturation ratios in urban streams were among the highest reported for flowing waters, ranging from 1.1–47 across all sites and dates. The highest N2O saturation ratios were measured in streams draining nonpoint N sources from septic systems and were strongly correlated with TDN. CO2 was highly correlated with N2O across all sites and dates (r2 = 0.84), and CO2 saturation ratio ranged from 1.1–73. CH4 was always super-saturated with saturation values ranging from 3.0 to 2157. Differences in stormwater and sewer infrastructure influenced water quality, with significant implications for enhancing or minimizing stream CO2, CH4, and N2O emissions.


2021 ◽  
Vol 754 ◽  
pp. 141935
Author(s):  
Muhammad Waqqas Khan Tarin ◽  
Muhammad Athar Khaliq ◽  
Lili Fan ◽  
Dejin Xie ◽  
Muhammad Tayyab ◽  
...  

2020 ◽  
Author(s):  
Samuel Musarika ◽  
Davey Jones ◽  
Dave Chadwick ◽  
Niall McNamara ◽  
Chris Evans

<p>Peatlands cover three percent of the global land surface. However, they store significant amounts of carbon (C), approximately 30%. Peatlands are drained to support agricultural production. It’s estimated that agriculture exploits approximately 20% of peatlands worldwide. The exploited peatlands are significant emitters of carbon dioxide (CO<sub>2</sub>) and nitrous oxide (N<sub>2</sub>O). In Europe, agriculture is the second largest contributor of greenhouse gas (GHG) emissions. In addition to GHG emissions, we are fast losing productive peatlands; it’s estimated by 2050, a third of productive peatlands will be lost. Loss of productive peatlands will affect productivity and food security.</p><p>To prolong use of peatlands, ploughing in of crop residue, either from the previous season or specially grown crop, is often considered a mitigation option. Nevertheless, there is concern that fresh organic matter (FOM) might accelerate decomposition of existing organic. This study assesses effects of FOM on the emissions of CO<sub>2</sub>, methane (CH<sub>4</sub>) and N<sub>2</sub>O in a cultivated peatland. A mesocosm experiment was carried out using intact cores with added FOM and manipulated water table (WT), -20 and -50 cm.</p><p>The results show there is an effect of both WT and FOM on emissions. CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O emissions differ in the different WT treatments. The -20 cm cores produced more methane than the -50 cm.  It is evident that leaving crop residue and then ploughing it in does not have the desired effect as it led to increased emissions.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khadim Dawar ◽  
Shah Fahad ◽  
M. M. R. Jahangir ◽  
Iqbal Munir ◽  
Syed Sartaj Alam ◽  
...  

AbstractIn this study, we explored the role of biochar (BC) and/or urease inhibitor (UI) in mitigating ammonia (NH3) and nitrous oxide (N2O) discharge from urea fertilized wheat cultivated fields in Pakistan (34.01°N, 71.71°E). The experiment included five treatments [control, urea (150 kg N ha−1), BC (10 Mg ha−1), urea + BC and urea + BC + UI (1 L ton−1)], which were all repeated four times and were carried out in a randomized complete block design. Urea supplementation along with BC and BC + UI reduced soil NH3 emissions by 27% and 69%, respectively, compared to sole urea application. Nitrous oxide emissions from urea fertilized plots were also reduced by 24% and 53% applying BC and BC + UI, respectively, compared to urea alone. Application of BC with urea improved the grain yield, shoot biomass, and total N uptake of wheat by 13%, 24%, and 12%, respectively, compared to urea alone. Moreover, UI further promoted biomass and grain yield, and N assimilation in wheat by 38%, 22% and 27%, respectively, over sole urea application. In conclusion, application of BC and/or UI can mitigate NH3 and N2O emissions from urea fertilized soil, improve N use efficiency (NUE) and overall crop productivity.


Sign in / Sign up

Export Citation Format

Share Document