Epidemic Spreading in Urban Areas Using Agent-Based Transportation Models
Human mobility is a key element in the understanding of epidemic spreading. Thus, correctly modeling and quantifying human mobility is critical for studying large-scale spatial transmission of infectious diseases and improving epidemic control. In this study, a large-scale agent-based transport simulation (MATSim) is linked with a generic epidemic spread model to simulate the spread of communicable diseases in an urban environment. The use of an agent-based model allows reproduction of the real-world behavior of individuals’ daily path in an urban setting and allows the capture of interactions among them, in the form of a spatial-temporal social network. This model is used to study seasonal influenza outbreaks in the metropolitan area of Zurich, Switzerland. The observations of the agent-based models are compared with results from classical SIR models. The model presented is a prototype that can be used to analyze multiple scenarios in the case of a disease spread at an urban scale, considering variations of different model parameters settings. The results of this simulation can help to improve comprehension of the disease spread dynamics and to take better steps towards the prevention and control of an epidemic.