scholarly journals Numerical Simulation of Flow in Parshall Flume Using Selected Nonlinear Turbulence Models

Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 151
Author(s):  
Mehdi Heyrani ◽  
Abdolmajid Mohammadian ◽  
Ioan Nistor

This study uses a computational fluid dynamics (CFD) approach to simulate flows in Parshall flumes, which are used to measure flowrates in channels. The numerical results are compared with the experimental data, which show that choosing the right turbulence model, e.g., v2−f and LC, is the key element in accurately simulating Parshall flumes. The Standard Error of Estimate (SEE) values were very low, i.e., 0.76% and 1.00%, respectively, for the two models mentioned above. The Parshall flume used for this experiment is a good example of a hydraulic structure for which the design can be more improved by implementing a CFD approach compared with a laboratory (physical) modeling approach, which is often costly and time-consuming.

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Sulistiya Sulistiya ◽  
Alief Sadlie Kasman

AbstractNumerical simulation using Computational Fluid Dynamics (CFD) method is one way of predicting airflow characteristics on the model. This method is widely used because it is relatively inexpensive and faster in getting desired results compared with performing direct testing. The correctness of a computational simulation output is highly dependent on the input and how it was processed. In this paper, simulation is done on Onera M6 Wing, to investigate the effect of a turbulence model’s application on the accuracy of the computational result. The choice of Onera M6 Wing as a simulation’s model is due to its extensive database of testing results from various wind tunnels in the world. Among Turbulence models used are Spalart-Allmaras, K-Epsilon, K-Omega, and SST.Keywords: CFD, fluent, Model, Turbulence, Onera M6, Spalart-Allmaras, K-Epsilon, K-Omega, SST.AbstraksSimulasi numerik dengan menggunakan metode Computational Fluid Dynamics (CFD) merupakan salah satu cara untuk memprediksi karakteristik suatu aliran udara yang terjadi pada model. Metode ini banyak digunakan karena sifatnya yang relatif murah dan cepat untuk mendapatkan hasil dibandingkan dengan melakukan pengujian langsung. Benar tidak hasil sebuah simulasi komputasi sangat tergantung pada inputan yang diberikan serta cara memproses data inputan tersebut. Pada tulisan ini dilakukan simulasi dengan menggunakan sayap onera M6 dengan tujuan untuk mengetahui pengaruh penggunaan model turbulensi terhadap keakuratan hasil komputasi. Pilihan sayap onera M6 sebagai model simulasi dikarenakan model tersebut sudah memiliki database hasil pengujian yang cukup lengkap dan sudah divalidasi dari berbagai terowongan angin di dunia. Model turbulensi yang digunakan diantaranya Spalart-Allmaras, K-Epsilon, K-Omega dan SST.Kata Kunci : CFD, fluent, Model, Turbulensi, Onera M6, Spalart-Allmaras, K-Epsilon, K-Omega, SST.


2021 ◽  
Vol 2059 (1) ◽  
pp. 012003
Author(s):  
A Burmistrov ◽  
A Raykov ◽  
S Salikeev ◽  
E Kapustin

Abstract Numerical mathematical models of non-contact oil free scroll, Roots and screw vacuum pumps are developed. Modelling was carried out with the help of software CFD ANSYS-CFX and program TwinMesh for dynamic meshing. Pumping characteristics of non-contact pumps in viscous flow with the help of SST-turbulence model were calculated for varying rotors profiles, clearances, and rotating speeds. Comparison with experimental data verified adequacy of developed CFD models.


2005 ◽  
Vol 498-499 ◽  
pp. 179-185
Author(s):  
A.F. Lacerda ◽  
Luiz Gustavo Martins Vieira ◽  
A.M. Nascimento ◽  
S.D. Nascimento ◽  
João Jorge Ribeiro Damasceno ◽  
...  

A two-dimensional fluidynamics model for turbulent flow of gas in cyclones is used to evaluate the importance of the anisotropic of the Reynolds stress components. This study presents consisted in to simulate through computational fluid dynamics (CFD) package the operation of the Lapple cyclone. Yields of velocity obtained starting from a model anisotropic of the Reynolds stress are compared with experimental data of the literature, as form of validating the results obtained through the use of the Computational fluid dynamics (Fluent). The experimental data of the axial and swirl velocities validate numeric results obtained by the model.


2012 ◽  
Vol 532-533 ◽  
pp. 431-435
Author(s):  
Chong Zhi Mao ◽  
Qian Jian Guo ◽  
Lei He

Honeycomb ceramic is the key component of the regenerative system. The numerical simulation was performed using FLUENT, a commercial computational fluid dynamics (CFD) code, to compare simulation results to the test data. The regenerative process of a honeycomb ceramic regenerator was simulated under different conditions. Experiments were carried out on honeycomb regenerators that are contained in a methane oxidation reactor. The calculated temperatures of flue gas inlet were compared with the ones measured. The tendency of the temperature is the same as the experiment.


Author(s):  
Nazia Binte Munir ◽  
Kyoungsoo Lee ◽  
Ziaul Huque ◽  
Raghava R. Kommalapati

The main purpose of the paper is to use Computational Fluid Dynamics (CFD) in 3-D analysis of aerodynamic forces of a Horizontal Axis Wind Turbine (HAWT) blade and compare the 3-D results with the 2-D experimental results. The National Renewable Energy Laboratory (NREL) Phase VI wind blade profile is used as a model for the analysis. The results are compared with the experimental data obtained by NREL at NASA Ames Research Center for the NREL Phase VI wind turbine blade. The aerodynamic forces are evaluated using 3-D Computational Fluid Dynamics (CFD) simulation. The commercial ANSYS CFX and parameterized 3-D CAD model of NREL Phase VI are used for the analysis. The Shear Stress Transport (SST) Gamma-Theta turbulence model and 0-degree yaw angle condition are adopted for CFD analysis. For the case study seven varying wind speeds (5 m/s, 7 m/s, 10 m/s, 13 m/s, 15 m/s, 20 m/s, 25 m/s) with constant blade rotational speed (72 rpm) are considered. To evaluate the 3-D aerodynamic effect sectional pressure coefficient (Cp) and integrated forces about primary axis such as normal, tangential, thrust and torque are evaluated for each of the seven wind speed cases and compared with the NREL experimental values. The numerical difference of values on wind blade surface between this study and 3-D results of NREL wind tunnel test are found negligible. The paper represents an important comparison between the 3-D lift & drag coefficient with the NREL 2-D experimental data. The results shows that though the current study is in good agreement with NREL 3-D experimental values there is large deviation between the NREL 2-D experimental data and current 3-D study which suggests that in case of 3-D analysis of aerodynamic force of blade surface it is better to use NREL 3-D values instead of 2-D experimental values.


2018 ◽  
Vol 8 (3) ◽  
pp. 2897-2900
Author(s):  
F. P. Lucas ◽  
R. Huebner

This paper aims to apply computational fluid dynamics (CFD) to simulate air flow and air flow with water droplets, as a reasonable hypothesis for real flows, in order to evaluate a vertical separator vessel with inclined half-pipe inlet device (slope inlet). Thus, this type was compared to a separator vessel without inlet device (straight inlet). The results demonstrated a different performance for the two types in terms of air distribution and liquid removal efficiency.


Author(s):  
A. M. Sipatov ◽  
◽  
A. V. Khokhlov ◽  
T. V. Abramchuk ◽  
R. A. Zagitov ◽  
...  

The study of processes occurring in gas turbine combustor is an important part of engine design for achieving the required technical, operational, and environmental characteristics of the engine. During engine design process, both experimental and computational methods are used. The progress in numerical methods of modeling fourdimensional (space and time) physical phenomena and increasing of computation capacity allow application of complex computational fluid dynamics (CFD) methods for simulating such technical devices as the gas turbine combustor.


2012 ◽  
Vol 594-597 ◽  
pp. 2106-2111
Author(s):  
Yi Tang ◽  
Jin Feng Wang ◽  
Jing Xie ◽  
Zheng Zhang ◽  
Rui Liu

The sales volume of vertical air conditioner in China mainland has developed rapidly. The researches in the field to the operation of vertical air conditioner are lacked since it is hardly to analyze different kinds of operating condition. Computational Fluid Dynamics (CFD) has been applied in engineering with the advance of the computer science and technology. In this article, both temperature and air flow distributions were analyzed to a meeting room which putted a vertical air conditioner. The model was used and the equations for numerical simulation (e.g. energy, residual, continuity, etc) were chosen as second order to get the higher accuracy. The results to simulation were showed reasonable and could offer a reference to the practical.


Sign in / Sign up

Export Citation Format

Share Document