scholarly journals Exploring the Injury Severity Risk Factors in Fatal Crashes with Neural Network

Author(s):  
Arshad Jamal ◽  
Waleed Umer

A better understanding of circumstances contributing to the severity outcome of traffic crashes is an important goal of road safety studies. An in-depth crash injury severity analysis is vital for the proactive implementation of appropriate mitigation strategies. This study proposes an improved feed-forward neural network (FFNN) model for predicting injury severity associated with individual crashes using three years (2017–2019) of crash data collected along 15 rural highways in the Kingdom of Saudi Arabia (KSA). A total of 12,566 crashes were recorded during the study period with a binary injury severity outcome (fatal or non-fatal injury) for the variable to be predicted. FFNN architecture with back-propagation (BP) as a training algorithm, logistic as activation function, and six number of hidden neurons in the hidden layer yielded the best model performance. Results of model prediction for the test data were analyzed using different evaluation metrics such as overall accuracy, sensitivity, and specificity. Prediction results showed the adequacy and robust performance of the proposed method. A detailed sensitivity analysis of the optimized NN was also performed to show the impact and relative influence of different predictor variables on resulting crash injury severity. The sensitivity analysis results indicated that factors such as traffic volume, average travel speeds, weather conditions, on-site damage conditions, road and vehicle type, and involvement of pedestrians are the most sensitive variables. The methods applied in this study could be used in big data analysis of crash data, which can serve as a rapid-useful tool for policymakers to improve highway safety.

Author(s):  
Mohammad Razaur Rahman Shaon ◽  
Xiao Qin

Unsafe driving behaviors, driver limitations, and conditions that lead to a crash are usually referred to as driver errors. Even though driver errors are widely cited as a critical reason for crash occurrence in crash reports and safety literature, the discussion on their consequences is limited. This study aims to quantify the effect of driver errors on crash injury severity. To assist this investigation, driver errors were categorized as sequential events in a driving task. Possible combinations of driver error categories were created and ranked based on statistical dependences between error combinations and injury severity levels. Binary logit models were then developed to show that typical variables used to model injury severity such as driver characteristics, roadway characteristics, environmental factors, and crash characteristics are inadequate to explain driver errors, especially the complicated ones. Next, ordinal probit models were applied to quantify the effect of driver errors on injury severity for rural crashes. Superior model performance is observed when driver error combinations were modeled along with typical crash variables to predict the injury outcome. Modeling results also illustrate that more severe crashes tend to occur when the driver makes multiple mistakes. Therefore, incorporating driver errors in crash injury severity prediction not only improves prediction accuracy but also enhances our understanding of what error(s) may lead to more severe injuries so that safety interventions can be recommended accordingly.


2017 ◽  
Vol 3 ◽  
pp. e137 ◽  
Author(s):  
Mona Alshahrani ◽  
Othman Soufan ◽  
Arturo Magana-Mora ◽  
Vladimir B. Bajic

Background Artificial neural networks (ANNs) are a robust class of machine learning models and are a frequent choice for solving classification problems. However, determining the structure of the ANNs is not trivial as a large number of weights (connection links) may lead to overfitting the training data. Although several ANN pruning algorithms have been proposed for the simplification of ANNs, these algorithms are not able to efficiently cope with intricate ANN structures required for complex classification problems. Methods We developed DANNP, a web-based tool, that implements parallelized versions of several ANN pruning algorithms. The DANNP tool uses a modified version of the Fast Compressed Neural Network software implemented in C++ to considerably enhance the running time of the ANN pruning algorithms we implemented. In addition to the performance evaluation of the pruned ANNs, we systematically compared the set of features that remained in the pruned ANN with those obtained by different state-of-the-art feature selection (FS) methods. Results Although the ANN pruning algorithms are not entirely parallelizable, DANNP was able to speed up the ANN pruning up to eight times on a 32-core machine, compared to the serial implementations. To assess the impact of the ANN pruning by DANNP tool, we used 16 datasets from different domains. In eight out of the 16 datasets, DANNP significantly reduced the number of weights by 70%–99%, while maintaining a competitive or better model performance compared to the unpruned ANN. Finally, we used a naïve Bayes classifier derived with the features selected as a byproduct of the ANN pruning and demonstrated that its accuracy is comparable to those obtained by the classifiers trained with the features selected by several state-of-the-art FS methods. The FS ranking methodology proposed in this study allows the users to identify the most discriminant features of the problem at hand. To the best of our knowledge, DANNP (publicly available at www.cbrc.kaust.edu.sa/dannp) is the only available and on-line accessible tool that provides multiple parallelized ANN pruning options. Datasets and DANNP code can be obtained at www.cbrc.kaust.edu.sa/dannp/data.php and https://doi.org/10.5281/zenodo.1001086.


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 593 ◽  
Author(s):  
Qiangjian Gao ◽  
Yingyi Zhang ◽  
Xin Jiang ◽  
Haiyan Zheng ◽  
Fengman Shen

The Ambient Compressive Strength (CS) of pellets, influenced by several factors, is regarded as a criterion to assess pellets during metallurgical processes. A prediction model based on Artificial Neural Network (ANN) was proposed in order to provide a reliable and economic control strategy for CS in pellet production and to forecast and control pellet CS. The dimensionality of 19 influence factors of CS was considered and reduced by Principal Component Analysis (PCA). The PCA variables were then used as the input variables for the Back Propagation (BP) neural network, which was upgraded by Genetic Algorithm (GA), with CS as the output variable. After training and testing with production data, the PCA-GA-BP neural network was established. Additionally, the sensitivity analysis of input variables was calculated to obtain a detailed influence on pellet CS. It has been found that prediction accuracy of the PCA-GA-BP network mentioned here is 96.4%, indicating that the ANN network is effective to predict CS in the pelletizing process.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 381 ◽  
Author(s):  
Yaping Liao ◽  
Junyou Zhang ◽  
Shufeng Wang ◽  
Sixian Li ◽  
Jian Han

Motor vehicle crashes remain a leading cause of life and property loss to society. Autonomous vehicles can mitigate the losses by making appropriate emergency decision, and the crash injury severity prediction model is the basis for autonomous vehicles to make decisions in emergency situations. In this paper, based on the support vector machine (SVM) model and NASS/GES crash data, three SVM crash injury severity prediction models (B-SVM, T-SVM, and BT-SVM) corresponding to braking, turning, and braking + turning respectively are established. The vehicle relative speed (REL_SPEED) and the gross vehicle weight rating (GVWR) are introduced into the impact indicators of the prediction models. Secondly, the ordered logit (OL) and back propagation neural network (BPNN) models are established to validate the accuracy of the SVM models. The results show that the SVM models have the best performance than the other two. Next, the impact of REL_SPEED and GVWR on injury severity is analyzed quantitatively by the sensitivity analysis, the results demonstrate that the increase of REL_SPEED and GVWR will make vehicle crash more serious. Finally, the same crash samples under normal road and environmental conditions are input into B-SVM, T-SVM, and BT-SVM respectively, the output results are compared and analyzed. The results show that with other conditions being the same, as the REL_SPEED increased from the low (0–20 mph) to middle (20–45 mph) and then to the high range (45–75 mph), the best emergency decision with the minimum crash injury severity will gradually transition from braking to turning and then to braking + turning.


2013 ◽  
Vol 15 (1) ◽  
pp. 102-109 ◽  
Author(s):  
Zhenyu Wang ◽  
Bing Huang ◽  
Jian Lu ◽  
Jianyou Zhao ◽  
Yu Zhang

Author(s):  
He Wang

Artificial Neural Network (ANN) with its self-learning capabilities, nonlinear mapping ability and generalization ability, has been widely applied for fault diagnosis of complex system like Nuclear Power Plant (NPP). In this paper, an overview of the application of supervised multi-layer feed-forward neural network for fault diagnosis of NPP is presented, including the following aspects: the acquisition of the training sample data, the determination of appropriate input and output data, the choice of hidden layer structure and the evaluation of network model performance. Finally, a number of key issues about the engineering application of neural network fault diagnosis in practice were discussed.


Automatic speech recognition has attained a lot of significance as it can act as easy communication link between machines and humans. This mode of communication is easy for man to use as it is effortless and easy. Many approaches for extraction of the features of the speech and classification of speech have been considered. This paper unveils the importance of neutral network and the way it can be used for recognition of speech. Mel Frequency Cepstrum Coefficients is made use of for extraction of the features from the voice. For pattern matching neural network has been used. MATLAB has been used to show how the speech is recognized. In this paper the speech recognition has been done firstly by multilayer feed forward neural network using Back propagation algorithm. Then the process of speech recognition is shown by using Radial basis function neural network. The paper then analyzes the performance of both the algorithms and experimental result shows that BPNN outperforms the RBFNN.


Author(s):  
Tong Zhu ◽  
Zishuo Zhu ◽  
Jie Zhang ◽  
Chenxuan Yang

Accidents involving electric bicycles, a popular means of transportation in China during peak traffic periods, have increased. However, studies have seldom attempted to detect the unique crash consequences during this period. This study aims to explore the factors influencing injury severity in electric bicyclists during peak traffic periods and provide recommendations to help devise specific management strategies. The random-parameters logit or mixed logit model is used to identify the relationship between different factors and injury severity. The injury severity is divided into four categories. The analysis uses automobile and electric bicycle crash data of Xi’an, China, between 2014 and 2019. During the peak traffic periods, the impact of low visibility significantly varies with factors such as areas with traffic control or without streetlights. Furthermore, compared with traveling in a straight line, three different turnings before the crash reduce the likelihood of severe injuries. Roadside protection trees are the most crucial measure guaranteeing riders’ safety during peak traffic periods. This study reveals the direction, magnitude, and randomness of factors that contribute to electric bicycle crashes. The results can help safety authorities devise targeted transportation safety management and planning strategies for peak traffic periods.


Sign in / Sign up

Export Citation Format

Share Document