Crash Data-Based Investigation into How Injury Severity Is Affected by Driver Errors

Author(s):  
Mohammad Razaur Rahman Shaon ◽  
Xiao Qin

Unsafe driving behaviors, driver limitations, and conditions that lead to a crash are usually referred to as driver errors. Even though driver errors are widely cited as a critical reason for crash occurrence in crash reports and safety literature, the discussion on their consequences is limited. This study aims to quantify the effect of driver errors on crash injury severity. To assist this investigation, driver errors were categorized as sequential events in a driving task. Possible combinations of driver error categories were created and ranked based on statistical dependences between error combinations and injury severity levels. Binary logit models were then developed to show that typical variables used to model injury severity such as driver characteristics, roadway characteristics, environmental factors, and crash characteristics are inadequate to explain driver errors, especially the complicated ones. Next, ordinal probit models were applied to quantify the effect of driver errors on injury severity for rural crashes. Superior model performance is observed when driver error combinations were modeled along with typical crash variables to predict the injury outcome. Modeling results also illustrate that more severe crashes tend to occur when the driver makes multiple mistakes. Therefore, incorporating driver errors in crash injury severity prediction not only improves prediction accuracy but also enhances our understanding of what error(s) may lead to more severe injuries so that safety interventions can be recommended accordingly.

Safety ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 32
Author(s):  
Syed As-Sadeq Tahfim ◽  
Chen Yan

The unobserved heterogeneity in traffic crash data hides certain relationships between the contributory factors and injury severity. The literature has been limited in exploring different types of clustering methods for the analysis of the injury severity in crashes involving large trucks. Additionally, the variability of data type in traffic crash data has rarely been addressed. This study explored the application of the k-prototypes clustering method to countermeasure the unobserved heterogeneity in large truck-involved crashes that had occurred in the United States between the period of 2016 to 2019. The study segmented the entire dataset (EDS) into three homogeneous clusters. Four gradient boosted decision trees (GBDT) models were developed on the EDS and individual clusters to predict the injury severity in crashes involving large trucks. The list of input features included crash characteristics, truck characteristics, roadway attributes, time and location of the crash, and environmental factors. Each cluster-based GBDT model was compared with the EDS-based model. Two of the three cluster-based models showed significant improvement in their predicting performances. Additionally, feature analysis using the SHAP (Shapley additive explanations) method identified few new important features in each cluster and showed that some features have a different degree of effects on severe injuries in the individual clusters. The current study concluded that the k-prototypes clustering-based GBDT model is a promising approach to reveal hidden insights, which can be used to improve safety measures, roadway conditions and policies for the prevention of severe injuries in crashes involving large trucks.


Author(s):  
Arshad Jamal ◽  
Waleed Umer

A better understanding of circumstances contributing to the severity outcome of traffic crashes is an important goal of road safety studies. An in-depth crash injury severity analysis is vital for the proactive implementation of appropriate mitigation strategies. This study proposes an improved feed-forward neural network (FFNN) model for predicting injury severity associated with individual crashes using three years (2017–2019) of crash data collected along 15 rural highways in the Kingdom of Saudi Arabia (KSA). A total of 12,566 crashes were recorded during the study period with a binary injury severity outcome (fatal or non-fatal injury) for the variable to be predicted. FFNN architecture with back-propagation (BP) as a training algorithm, logistic as activation function, and six number of hidden neurons in the hidden layer yielded the best model performance. Results of model prediction for the test data were analyzed using different evaluation metrics such as overall accuracy, sensitivity, and specificity. Prediction results showed the adequacy and robust performance of the proposed method. A detailed sensitivity analysis of the optimized NN was also performed to show the impact and relative influence of different predictor variables on resulting crash injury severity. The sensitivity analysis results indicated that factors such as traffic volume, average travel speeds, weather conditions, on-site damage conditions, road and vehicle type, and involvement of pedestrians are the most sensitive variables. The methods applied in this study could be used in big data analysis of crash data, which can serve as a rapid-useful tool for policymakers to improve highway safety.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 381 ◽  
Author(s):  
Yaping Liao ◽  
Junyou Zhang ◽  
Shufeng Wang ◽  
Sixian Li ◽  
Jian Han

Motor vehicle crashes remain a leading cause of life and property loss to society. Autonomous vehicles can mitigate the losses by making appropriate emergency decision, and the crash injury severity prediction model is the basis for autonomous vehicles to make decisions in emergency situations. In this paper, based on the support vector machine (SVM) model and NASS/GES crash data, three SVM crash injury severity prediction models (B-SVM, T-SVM, and BT-SVM) corresponding to braking, turning, and braking + turning respectively are established. The vehicle relative speed (REL_SPEED) and the gross vehicle weight rating (GVWR) are introduced into the impact indicators of the prediction models. Secondly, the ordered logit (OL) and back propagation neural network (BPNN) models are established to validate the accuracy of the SVM models. The results show that the SVM models have the best performance than the other two. Next, the impact of REL_SPEED and GVWR on injury severity is analyzed quantitatively by the sensitivity analysis, the results demonstrate that the increase of REL_SPEED and GVWR will make vehicle crash more serious. Finally, the same crash samples under normal road and environmental conditions are input into B-SVM, T-SVM, and BT-SVM respectively, the output results are compared and analyzed. The results show that with other conditions being the same, as the REL_SPEED increased from the low (0–20 mph) to middle (20–45 mph) and then to the high range (45–75 mph), the best emergency decision with the minimum crash injury severity will gradually transition from braking to turning and then to braking + turning.


Author(s):  
Khaled Assi ◽  
Syed Masiur Rahman ◽  
Umer Mansoor ◽  
Nedal Ratrout

Predicting crash injury severity is a crucial constituent of reducing the consequences of traffic crashes. This study developed machine learning (ML) models to predict crash injury severity using 15 crash-related parameters. Separate ML models for each cluster were obtained using fuzzy c-means, which enhanced the predicting capability. Finally, four ML models were developed: feed-forward neural networks (FNN), support vector machine (SVM), fuzzy C-means clustering based feed-forward neural network (FNN-FCM), and fuzzy c-means based support vector machine (SVM-FCM). Features that were easily identified with little investigation on crash sites were used as an input so that the trauma center can predict the crash severity level based on the initial information provided from the crash site and prepare accordingly for the treatment of the victims. The input parameters mainly include vehicle attributes and road condition attributes. This study used the crash database of Great Britain for the years 2011–2016. A random sample of crashes representing each year was used considering the same share of severe and non-severe crashes. The models were compared based on injury severity prediction accuracy, sensitivity, precision, and harmonic mean of sensitivity and precision (i.e., F1 score). The SVM-FCM model outperformed the other developed models in terms of accuracy and F1 score in predicting the injury severity level of severe and non-severe crashes. This study concluded that the FCM clustering algorithm enhanced the prediction power of FNN and SVM models.


Author(s):  
Tong Zhu ◽  
Zishuo Zhu ◽  
Jie Zhang ◽  
Chenxuan Yang

Accidents involving electric bicycles, a popular means of transportation in China during peak traffic periods, have increased. However, studies have seldom attempted to detect the unique crash consequences during this period. This study aims to explore the factors influencing injury severity in electric bicyclists during peak traffic periods and provide recommendations to help devise specific management strategies. The random-parameters logit or mixed logit model is used to identify the relationship between different factors and injury severity. The injury severity is divided into four categories. The analysis uses automobile and electric bicycle crash data of Xi’an, China, between 2014 and 2019. During the peak traffic periods, the impact of low visibility significantly varies with factors such as areas with traffic control or without streetlights. Furthermore, compared with traveling in a straight line, three different turnings before the crash reduce the likelihood of severe injuries. Roadside protection trees are the most crucial measure guaranteeing riders’ safety during peak traffic periods. This study reveals the direction, magnitude, and randomness of factors that contribute to electric bicycle crashes. The results can help safety authorities devise targeted transportation safety management and planning strategies for peak traffic periods.


2019 ◽  
Vol 11 (11) ◽  
pp. 3169 ◽  
Author(s):  
Ho-Chul Park ◽  
Yang-Jun Joo ◽  
Seung-Young Kho ◽  
Dong-Kyu Kim ◽  
Byung-Jung Park

Bus–pedestrian crashes typically result in more severe injuries and deaths than any other type of bus crash. Thus, it is important to screen and improve the risk factors that affect bus–pedestrian crashes. However, bus–pedestrian crashes that are affected by a company’s and regional characteristics have a cross-classified hierarchical structure, which is difficult to address properly using a single-level model or even a two-level multi-level model. In this study, we used a cross-classified, multi-level model to consider simultaneously the unobserved heterogeneities at these two distinct levels. Using bus–pedestrian crash data in South Korea from 2011 through to 2015, in this study, we investigated the factors related to the injury severity of the crashes, including crash level, regional and company level factors. The results indicate that the company and regional effects are 16.8% and 5.1%, respectively, which justified the use of a multi-level model. We confirm that type I errors may arise when the effects of upper-level groups are ignored. We also identified the factors that are statistically significant, including three regional-level factors, i.e., the elderly ratio, the ratio of the transportation infrastructure budget, and the number of doctors, and 13 crash-level factors. This study provides useful insights concerning bus–pedestrian crashes, and a safety policy is suggested to enhance bus–pedestrian safety.


Author(s):  
Shengxue Zhu ◽  
Ke Wang ◽  
Chongyi Li

In many related works, nominal classification algorithms ignore the order between injury severity levels and make sub-optimal predictions. Existing ordinal classification methods suffer rank inconsistency and rank non-monotonicity. The aim of this paper is to propose an ordinal classification approach to predict traffic crash injury severity and to test its performance over existing machine learning classification methods. First, we compare the performance of the neural network, XGBoost, and SVM classifiers in injury severity prediction. Second, we utilize a severity category-combination method with oversampling to relieve the class-imbalance problem prevalent in crash data. Third, we take advantage of probability calibration and the optimal probability threshold moving to improve the prediction ability of ordinal classification. The proposed approach can satisfy the rank consistency and rank monotonicity requirement and is proved to be superior to other ordinal classification methods and nominal classification machine learning by statistical significance test. Important factors relating to injury severity are selected based on their permutation feature importance scores. We find that converting severity levels into three classes, minor injury, moderate injury, and serious injury, can substantially improve the prediction precision.


Sign in / Sign up

Export Citation Format

Share Document