scholarly journals Diverse Physiological Functions and Regulatory Mechanisms for Signal-Transducing Small GTPases

2020 ◽  
Vol 21 (19) ◽  
pp. 7291
Author(s):  
Takaya Satoh

Diverse GTPases act as signal transducing enzymes in a variety of organisms and cell types [...]

2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Gaoyue Jiang ◽  
Chunxia Li ◽  
Meng Lu ◽  
Kefeng Lu ◽  
Huihui Li

AbstractLysine crotonylation has been discovered in histone and non-histone proteins and found to be involved in diverse diseases and biological processes, such as neuropsychiatric disease, carcinogenesis, spermatogenesis, tissue injury, and inflammation. The unique carbon–carbon π-bond structure indicates that lysine crotonylation may use distinct regulatory mechanisms from the widely studied other types of lysine acylation. In this review, we discussed the regulation of lysine crotonylation by enzymatic and non-enzymatic mechanisms, the recognition of substrate proteins, the physiological functions of lysine crotonylation and its cross-talk with other types of modification. The tools and methods for prediction and detection of lysine crotonylation were also described.


Physiology ◽  
1989 ◽  
Vol 4 (5) ◽  
pp. 169-172 ◽  
Author(s):  
SG Schultz

Volume regulatory mechanisms, which evolved in Precambrian life and served to prevent cell lysis when our bacterial and invertebrate ancestors were confronted with hypotonic extracellular milieus, have been preserved in vertebrate cells but with redefined and highly sophisticated physiological functions.


2019 ◽  
Vol 20 (7) ◽  
pp. 1548 ◽  
Author(s):  
Vincenza Aliperti ◽  
Giulia Sgueglia ◽  
Francesco Aniello ◽  
Emilia Vitale ◽  
Laura Fucci ◽  
...  

EGR1 is a transcription factor expressed in many cell types that regulates genes involved in different biological processes including growth, proliferation, and apoptosis. Dysregulation of EGR1 expression has been associated with many pathological conditions such as tumors and brain diseases. Known molecular mechanisms underlying the control of EGR1 function include regulation of transcription, mRNA and protein stability, and post-translational modifications. Here we describe the identification of a splicing isoform for the human EGR1 gene. The newly identified splicing transcript encodes a shorter protein compared to the canonical EGR1. This isoform lacks a region belonging to the N-terminal activation domain and although it is capable of entering the nucleus, it is unable to activate transcription fully relative to the canonical isoform.


1988 ◽  
Vol 8 (9) ◽  
pp. 3929-3933 ◽  
Author(s):  
K Tokunaga ◽  
K Takeda ◽  
K Kamiyama ◽  
H Kageyama ◽  
K Takenaga ◽  
...  

We described the structures of mouse cytoskeletal gamma-actin cDNA clones and showed that there is strong conservation of the untranslated regions with human gamma-actin cDNA. In addition, we found that the expression levels of beta- and gamma-actin mRNAs are differentially controlled in various mouse tissues and cell types but are coordinately increased in the cellular growing state. These results suggest that there are multiple regulatory mechanisms of cytoskeletal actin genes and are consistent with the argument that beta- and gamma-actins might have functional diversity in mammalian cells.


2014 ◽  
Vol 5 ◽  
Author(s):  
Youhei Egami ◽  
Tomohiko Taguchi ◽  
Masashi Maekawa ◽  
Hiroyuki Arai ◽  
Nobukazu Araki

Blood ◽  
2012 ◽  
Vol 119 (2) ◽  
pp. 573-582 ◽  
Author(s):  
Roland Csépányi-Kömi ◽  
Gábor Sirokmány ◽  
Miklós Geiszt ◽  
Erzsébet Ligeti

Members of the Rac/Rho family of small GTPases play an essential role in phagocytic cells in organization of the actin cytoskeleton and production of toxic oxygen compounds. GTPase-activating proteins (GAPs) decrease the amount of the GTP-bound active form of small GTPases, and contribute to the control of biologic signals. The number of potential Rac/RhoGAPs largely exceeds the number of Rac/Rho GTPases and the expression profile, and their specific role in different cell types is largely unknown. In this study, we report for the first time the properties of full-length ARHGAP25 protein, and show that it is specifically expressed in hematopoietic cells, and acts as a RacGAP both in vitro and in vivo. By silencing and overexpressing the protein in neutrophil model cell lines (PLB-985 and CosPhoxFcγR, respectively) and in primary macrophages, we demonstrate that ARHGAP25 is a negative regulator of phagocytosis acting probably via modulation of the actin cytoskeleton.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenye Lin ◽  
Ying Wang ◽  
Yoan Coudert ◽  
Daniel Kierzkowski

Specialized photosynthetic organs have appeared several times independently during the evolution of land plants. Phyllids, the leaf-like organs of bryophytes such as mosses or leafy liverworts, display a simple morphology, with a small number of cells and cell types and lack typical vascular tissue which contrasts greatly with flowering plants. Despite this, the leaf structures of these two plant types share many morphological characteristics. In this review, we summarize the current understanding of leaf morphogenesis in the model moss Physcomitrium patens, focusing on the underlying cellular patterns and molecular regulatory mechanisms. We discuss this knowledge in an evolutionary context and identify parallels between moss and flowering plant leaf development. Finally, we propose potential research directions that may help to answer fundamental questions in plant development using moss leaves as a model system.


Author(s):  
Thomas Hollin ◽  
Karine G. Le Roch

Over the past decade, we have witnessed significant progresses in understanding gene regulation in Apicomplexa including the human malaria parasite, Plasmodium falciparum. This parasite possesses the ability to convert in multiple stages in various hosts, cell types, and environments. Recent findings indicate that P. falciparum is talented at using efficient and complementary molecular mechanisms to ensure a tight control of gene expression at each stage of its life cycle. Here, we review the current understanding on the contribution of the epigenome, atypical transcription factors, and chromatin organization to regulate stage conversion in P. falciparum. The adjustment of these regulatory mechanisms occurring during the progression of the life cycle will be extensively discussed.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Bum-Kyu Lee ◽  
Yu jin Jang ◽  
Mijeong Kim ◽  
Lucy LeBlanc ◽  
Catherine Rhee ◽  
...  

Abstract Trophectoderm (TE) lineage development is pivotal for proper implantation, placentation, and healthy pregnancy. However, only a few TE-specific transcription factors (TFs) have been systematically characterized, hindering our understanding of the process. To elucidate regulatory mechanisms underlying TE development, here we map super-enhancers (SEs) in trophoblast stem cells (TSCs) as a model. We find both prominent TE-specific master TFs (Cdx2, Gata3, and Tead4), and >150 TFs that had not been previously implicated in TE lineage, that are SE-associated. Mapping targets of 27 SE-predicted TFs reveals a highly intertwined transcriptional regulatory circuitry. Intriguingly, SE-predicted TFs show 4 distinct expression patterns with dynamic alterations of their targets during TSC differentiation. Furthermore, depletion of a subset of TFs results in dysregulation of the markers for specialized cell types in placenta, suggesting a role during TE differentiation. Collectively, we characterize an expanded TE-specific regulatory network, providing a framework for understanding TE lineage development and placentation.


2014 ◽  
Vol 94 (3) ◽  
pp. 795-858 ◽  
Author(s):  
Jaap G. Neels ◽  
Paul A. Grimaldi

The peroxisome proliferator-activated receptors, PPARα, PPARβ, and PPARγ, are a family of transcription factors activated by a diversity of molecules including fatty acids and fatty acid metabolites. PPARs regulate the transcription of a large variety of genes implicated in metabolism, inflammation, proliferation, and differentiation in different cell types. These transcriptional regulations involve both direct transactivation and interaction with other transcriptional regulatory pathways. The functions of PPARα and PPARγ have been extensively documented mainly because these isoforms are activated by molecules clinically used as hypolipidemic and antidiabetic compounds. The physiological functions of PPARβ remained for a while less investigated, but the finding that specific synthetic agonists exert beneficial actions in obese subjects uplifted the studies aimed to elucidate the roles of this PPAR isoform. Intensive work based on pharmacological and genetic approaches and on the use of both in vitro and in vivo models has considerably improved our knowledge on the physiological roles of PPARβ in various cell types. This review will summarize the accumulated evidence for the implication of PPARβ in the regulation of development, metabolism, and inflammation in several tissues, including skeletal muscle, heart, skin, and intestine. Some of these findings indicate that pharmacological activation of PPARβ could be envisioned as a therapeutic option for the correction of metabolic disorders and a variety of inflammatory conditions. However, other experimental data suggesting that activation of PPARβ could result in serious adverse effects, such as carcinogenesis and psoriasis, raise concerns about the clinical use of potent PPARβ agonists.


Sign in / Sign up

Export Citation Format

Share Document