scholarly journals A Physically Based Constitutive Model and Continuous Dynamic Recrystallization Behavior Analysis of 2219 Aluminum Alloy during Hot Deformation Process

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1443 ◽  
Author(s):  
Lei Liu ◽  
Yunxin Wu ◽  
Hai Gong ◽  
Shuang Li ◽  
A. S. Ahmad

The isothermal compression tests of the 2219 Al alloy were conducted at the temperature and the strain rate ranges of 623–773 K and 0.01–10 s−1, respectively, and the deformed microstructures were observed. The flow curves of the 2219 Al alloy obtained show that flow stress decreases with the increase in temperature and/or the decrease in strain rate. The physically based constitutive model is applied to describe the flow behavior during hot deformation. In this model, Young’s modulus and lattice diffusion coefficient are temperature-dependent, and the creep exponent is regarded as a variable. The predicted values calculated by the constitutive model are in good agreement with the experimental results. In addition, it is confirmed that the main softening mechanism of the 2219 Al alloy during hot deformation is dynamic recovery and incomplete continuous dynamic recrystallization (CDRX) by the analysis of electron backscattered diffraction (EBSD) micrographs. Moreover, CDRX can readily occur under the condition of high temperatures, low strain rates, and large strains. Meanwhile, the recrystallization grain size will also be larger.

Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 212 ◽  
Author(s):  
Jingdan Li ◽  
Jiansheng Liu

Hot deformation behavior of Nb-contained 316LN was investigated using a series of compression tests performed on a Gleeble-1500D simulator at temperature of 950–1200 °C and strain rate of 0.01~1 s−1. Based on the strain compensation method, a modified Arrhenius constitutive model considering the comprehensive effects of temperature, strain rate, and strain on flow stress was established, and the accuracy of the proposed model was evaluated by introducing correlation coefficient (R) and average relative error (AARE). The values of R and AARE were calculated as 0.995 and 4.48%, respectively, proving that the modified model has a high accuracy in predicting the flow stress of Nb-contained 316LN. The microstructure evolution and the dynamic recrystallization (DRX) mechanism of the experimental material were explicated by optical microscopy (OM), electron back scattered diffraction (EBSD), and transmission electron microscopy (TEM). It was found that continuous dynamic recrystallization (CDRX) characterized by subgrain evolution and discontinuous dynamic recrystallization (DDRX) featured by grain boundary nuclei are two main dynamic recrystallization (DRX) mechanisms of Nb-contained 316LN. Furthermore, based on the results of microstructure analyses, optimum parameters were obtained as temperature ranges of 1100~1200 °C and strain rate ranges of 0.01~1 s−1.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 572
Author(s):  
Hamed Aghajani Derazkola ◽  
Eduardo García Gil ◽  
Alberto Murillo-Marrodán ◽  
Damien Méresse

The evolution of the microstructure changes during hot deformation of high-chromium content of stainless steels (martensitic stainless steels) is reviewed. The microstructural changes taking place under high-temperature conditions and the associated mechanical behaviors are presented. During the continuous dynamic recrystallization (cDRX), the new grains nucleate and growth in materials with high stacking fault energies (SFE). On the other hand, new ultrafine grains could be produced in stainless steel material irrespective of the SFE employing high deformation and temperatures. The gradual transformation results from the dislocation of sub-boundaries created at low strains into ultrafine grains with high angle boundaries at large strains. There is limited information about flow stress and monitoring microstructure changes during the hot forming of martensitic stainless steels. For this reason, continuous dynamic recrystallization (cDRX) is still not entirely understood for these types of metals. Recent studies of the deformation behavior of martensitic stainless steels under thermomechanical conditions investigated the relationship between the microstructural changes and mechanical properties. In this review, grain formation under thermomechanical conditions and dynamic recrystallization behavior of this type of steel during the deformation phase is discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Qiang Fu ◽  
Wuhua Yuan ◽  
Wei Xiang

In the present work, the hot deformation behavior of TB18 titanium alloy was investigated by isothermal hot compression tests with temperatures from 650 to 880°C and strain rates from 0.001 to 10 s−1. The flow curves after friction and temperature correction show that the peak stress decreased with the temperature increase and the strain rate decrease. Three typical characteristics of flow behavior indicate the dynamic softening behavior during hot deformation. At a strain rate of 0.001∼0.01 s−1, the flow stress continues to decrease as the strain rate increases after the flow stress reaches the peak stress; the flow softening mechanism is dynamic recovery and dynamic recrystallization at a lower temperature and dynamic recrystallization at a higher temperature. The discontinuous yielding phenomenon could be seen at a strain rate of 1 s−1, dynamic recrystallization took place in the β single-phase zone, and flow localization bands were observed in the α + β two-phase zone. At a higher strain rate of 10 s−1, the flow instabilities were referred to as the occurrence of flow localization by adiabatic heat. Constitutive equation considering the compensation of strain was also established, and the results show high accuracy to predict the flow stress with the correlation coefficient of 99.2% and the AARE of 6.1%, respectively.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4553
Author(s):  
Shaomin Lv ◽  
Jinbin Chen ◽  
Xinbo He ◽  
Chonglin Jia ◽  
Kang Wei ◽  
...  

Sub-solvus dynamic recrystallization (DRX) mechanisms in an advanced γ-γ’ nickel-based superalloy GH4151 were investigated by isothermal compression experiments at 1040 °C with a strain rate of 0.1 s−1 and various true strain of 0.1, 0.3, 0.5, and 0.7, respectively. This has not been reported in literature before. The electron backscatter diffraction (EBSD) and transmission electron microscope (TEM) technology were used for the observation of microstructure evolution and the confirmation of DRX mechanisms. The results indicate that a new dynamic recrystallization mechanism occurs during hot deformation of the hot-extruded GH4151 alloy. The nucleation mechanism can be described as such a feature, that is a primary γ’ (Ni3(Al, Ti, Nb)) precipitate embedded in a recrystallized grain existed the same crystallographic orientation, which is defined as heteroepitaxial dynamic recrystallization (HDRX). Meanwhile, the conventional DRX mechanisms, such as the discontinuous dynamic recrystallization (DDRX) characterized by bulging grain boundary and continuous dynamic recrystallization (CDRX) operated through progressive sub-grain merging and rotation, also take place during the hot deformation of the hot-extruded GH4151 alloy. In addition, the step-shaped structures can be observed at grain boundaries, which ensure the low-energy surface state during the DRX process.


2014 ◽  
Vol 680 ◽  
pp. 15-22 ◽  
Author(s):  
Guang Lu ◽  
Zhi Ping Xie ◽  
Zhi Min Zhang ◽  
Yong Biao Yang ◽  
Bao Cheng Li

The deformation behaviors of as-cast Mg-11Gd-2Y-Zn-Zr magnesium alloy were investigated by compression test with Gleeble-1500 thermal simulator at temperature of 623-753K and strain rate of 0.01-0.5 s-1. The flow stress behaviors of the magnesium alloy were carried out at a strain of 0.7. The strain rate and deformation temperature had great influence on the flow stress behaviors. The flow stress increases with increasing strain rate and decreasing temperature. The flow stress has more than one peak stress at a strain rate of 0.5s-1showing continuous dynamic recrystallization (DRX) mechanism, while other flow stresses exhibited only one peak stress indicating discontinuous dynamic recrystallization (DDRX) mechanism. It was also found that the flow stress behavior could be described by the hyperbolic sine constitutive equation, in which the determined average activation energy is 273.426 kJ·mol-1. The maximum error value between calculated value and experimental value is 5.5%. The deformation map was also established, and the best parameter for hot working was found to be 0.1s-1/753k approximately.


2004 ◽  
Vol 467-470 ◽  
pp. 1151-1156 ◽  
Author(s):  
Cédric Chauvy ◽  
Pierre Barbéris ◽  
Frank Montheillet

Compression tests were used to simulate simple deformation paths within the upper a-range of Zircaloy-4 (i.e. 500°C-750°C). The mechanical behaviour reveals two different domains : at low temperatures and large strain rates, strain hardening takes place before flow softening, whereas this first stage disappears at lower flow stress levels. Strain rate sensitivity and activation energy were determined for both domains. Dynamic recrystallization was investigated using the Electron BackScattering Diffraction (EBSD) technique. It appears that the mechanism involved here is continuous dynamic recrystallization (CDRX), based on the increasing misorientation of subgrain boundaries and their progressive transformation into large angle boundaries. At low strains (e £ 0.3), CDRX kinetics are similar whatever the deformation conditions, while higher temperatures and lower strain rates promote recrystallization at large strains.


2018 ◽  
Vol 941 ◽  
pp. 1443-1449 ◽  
Author(s):  
María Cecilia Poletti ◽  
Ricardo Buzolin ◽  
Sanjev Kumar ◽  
Peng Wang ◽  
Thierry Franz Jules Simonet-Fotso

This work deals with the analysis and modelling of the microstructural evolution of the metastable titanium alloy Ti-5Al-5V-5Mo-3Cr during hot deformation up to moderate and large strains. Experimental flow curves and deformed samples are obtained by hot compression and hot torsion tests using a Gleeble ® 3800 device. The samples are deformed above and below the beta transus temperature and in a wide range of strain rates. Microstructures are characterized after deformation and in-situ water quenching using light optical and scanning electron microscopy and electron back scattered diffraction (EBSD). Dynamic recovery of the beta phase is found to be the main deformation mechanism up to moderated strains. By increasing the strain, continuous dynamic recrystallization (cDRX) is confirmed by the progressive conversion of low angle boundaries into high-angle boundaries. Alpha phase plays a secondary role in the deformation of the material by pinning the movement of beta high angle grain boundaries (HAGB). The evolution of the microstructure is modelled using dislocation density as internal variable in the single β field.


2010 ◽  
Vol 667-669 ◽  
pp. 979-984 ◽  
Author(s):  
Hamed Asgharzadeh ◽  
Abdolreza Simchi ◽  
Hyoung Seop Kim

Al6063 powder was subjected to severe plastic deformation via high-energy mechanical milling to prepare ultrafine-grained (UFG) aluminium alloy. Uniaxial compression test at various temperatures between 300 and 450 °C and strain rates between 0.01 and 1 s-1 was carried out to evaluate hot workability of the material. Microstructural studies were performed by EBSD and TEM. The average activation energy and strain rate sensitivity of the hot deformation process were determined to be 280 kJ mol-1 and 0.05, respectively. The deformation temperature and applied strain rate significantly affected the grain structure of UFG Al alloy. A finer grain structure was obtained at lower temperatures and higher strain rates. The formation of highly misoriented and equiaxed grains also revealed that dynamic recrystallization occurred upon hot deformation. Furthermore, elongated grains with high dislocation density were observed that disclosed partial dynamic recrystallization of the aluminum matrix.


2004 ◽  
Vol 467-470 ◽  
pp. 1199-1204 ◽  
Author(s):  
Rustam Kaibyshev ◽  
I. Mazurina ◽  
Oleg Sitdikov

The mechanism of new grain evolution during equal channel angular extrusion (ECAE) up to a total strain of ~12 in an Al-Cu-Mn-Zr alloy at a temperature of 475oC (0.75Tm) was examined. It was shown that the new grains with an average size of about 15 µm result from a specific process of geometric dynamic recrystallization (GRX) which can be considered as a type of continuous dynamic recrystallization (CDRX). This process involves three elementary mechanisms. At moderate strains, extensive elongation of initial grains takes place; old grain boundaries become progressively serrated. Upon further ECAE processing, transverse low-angle boundaries (LAB) with misorientation ranging from 5 to 15o are evolved between grain boundary irregularities subdividing the initial elongated grains on crystallites with essentially equiaxed shape. The misorientation of these transverse subboundaries rapidly increases with increasing strain, resulting in the formation of true recrystallized grains outlined by high-angle boundaries from all sides. In the same time, the average misorientation of deformation-induced boundaries remains essentially unchanged during ECAE. It is caused by the fact that the evolution of LABs with misorientation less than 4o occurs continuously during severe plastic deformation. The mechanism maintaining the stability of the transverse subboundaries that is a prerequisite condition for their further transformation into highangle boundaries (HABs) is discussed.


Sign in / Sign up

Export Citation Format

Share Document