scholarly journals Structural Change in Ni-Fe-Ga Magnetic Shape Memory Alloys after Severe Plastic Deformation

Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1939 ◽  
Author(s):  
Gheorghe Gurau ◽  
Carmela Gurau ◽  
Felicia Tolea ◽  
Vedamanickam Sampath

Severe plastic deformation (SPD) is widely considered to be the most efficient process in obtaining ultrafine-grained bulk materials. The aim of this study is to examine the effects of the SPD process on Ni-Fe-Ga ferromagnetic shape memory alloys (FSMA). High-speed high-pressure torsion (HSHPT) was applied in the as-cast state. The exerted key parameters of deformation are described. Microstructural changes, including morphology that were the result of processing, were investigated by optical and scanning electron microscopy. Energy-dispersive X-ray spectroscopy was used to study the two-phase microstructure of the alloys. The influence of deformation on microstructural features, such as martensitic plates, intragranular γ phase precipitates, and grain boundaries’ dependence of the extent of deformation is disclosed by transmission electron microscopy. Moreover, the work brings to light the influence of deformation on the characteristics of martensitic transformation (MT). Vickers hardness measurements were carried out on disks obtained by SPD so as to correlate the hardness with the microstructure. The method represents a feasible alternative to obtain ultrafine-grained bulk Ni-Fe-Ga alloys.

2017 ◽  
Vol 1143 ◽  
pp. 214-220 ◽  
Author(s):  
Gheorghe Gurau ◽  
Carmela Gurau ◽  
Mihaela Banu ◽  
Leandru Gheorghe Bujoreanu

High speed high pressure torsion (HSHPT) processing technology, engineered to achieving (ultra) fine bulk metallic structure under high pressure (~ GPa) and torsion by applying supplementary elevated rotation speed of superior anvil. Coned-disk spring shape modules were processed from an as cast Fe-28Mn-6Si-5Cr (mass %) shape memory alloy (SMA). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies revealed that the structure of modules became submicron as an effect of HSHPT processing. After severe plastic deformation, a grain size gradient was obtained along the truncated cone generator, increasing from inner to outer areas, due to different deformation degrees in these zones. The mechanical and shape memory properties was performed in order to relate the structural changes caused by severe plastic deformation.


2011 ◽  
Vol 674 ◽  
pp. 171-175
Author(s):  
Katarzyna Bałdys ◽  
Grzegorz Dercz ◽  
Łukasz Madej

The ferromagnetic shape memory alloys (FSMA) are relatively the brand new smart materials group. The most interesting issue connected with FSMA is magnetic shape memory, which gives a possibility to achieve relatively high strain (over 8%) caused by magnetic field. In this paper the effect of annealing on the microstructure and martensitic transition on Ni-Mn-Co-In ferromagnetic shape memory alloy has been studied. The alloy was prepared by melting of 99,98% pure Ni, 99,98% pure Mn, 99,98% pure Co, 99,99% pure In. The chemical composition, its homogeneity and the alloy microstructure were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The phase composition was also studied by X-ray analysis. The transformation course and characteristic temperatures were determined by the use of differential scanning calorimetry (DSC) and magnetic balance techniques. The results show that Tc of the annealed sample was found to decrease with increasing the annealing temperature. The Ms and Af increases with increasing annealing temperatures and showed best results in 1173K. The studied alloy exhibits a martensitic transformation from a L21 austenite to a martensite phase with a 7-layer (14M) and 5-layer (10M) modulated structure. The lattice constants of the L21 (a0) structure determined by TEM and X-ray analysis in this alloy were a0=0,4866. The TEM observation exhibit that the studied alloy in initial state has bigger accumulations of 10M and 14M structures as opposed from the annealed state.


2010 ◽  
Vol 667-669 ◽  
pp. 253-258
Author(s):  
Wei Ping Hu ◽  
Si Yuan Zhang ◽  
Xiao Yu He ◽  
Zhen Yang Liu ◽  
Rolf Berghammer ◽  
...  

An aged Al-5Zn-1.6Mg alloy with fine η' precipitates was grain refined to ~100 nm grain size by severe plastic deformation (SPD). Microstructure evolution during SPD and mechanical behaviour after SPD of the alloy were characterized by electron microscopy and tensile, compression as well as nanoindentation tests. The influence of η' precipitates on microstructure and mechanical properties of ultrafine grained Al-Zn-Mg alloy is discussed with respect to their effect on dislocation configurations and deformation mechanisms during processing of the alloy.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4621
Author(s):  
Carmela Gurau ◽  
Gheorghe Gurau ◽  
Felicia Tolea ◽  
Bogdan Popescu ◽  
Mihaela Banu ◽  
...  

This work focuses on the temperature evolution of the martensitic phase ε (hexagonal close packed) induced by the severe plastic deformation via High Speed High Pressure Torsion method in Fe57Mn27Si11Cr5 (at %) alloy. The iron rich alloy crystalline structure, magnetic and transport properties were investigated on samples subjected to room temperature High Speed High Pressure Torsion incorporating 1.86 degree of deformation and also hot-compression. Thermo-resistivity as well as thermomagnetic measurements indicate an antiferromagnetic behavior with the Néel temperature (TN) around 244 K, directly related to the austenitic γ-phase. The sudden increase of the resistivity on cooling below the Néel temperature can be explained by an increased phonon-electron interaction. In-situ magnetic and electric transport measurements up to 900 K are equivalent to thermal treatments and lead to the appearance of the bcc-ferrite-like type phase, to the detriment of the ε(hcp) martensite and the γ (fcc) austenite phases.


2005 ◽  
Vol 410-411 ◽  
pp. 386-389 ◽  
Author(s):  
V.G. Pushin ◽  
V.V. Stolyarov ◽  
R.Z. Valiev ◽  
T.C. Lowe ◽  
Y.T. Zhu

2012 ◽  
Vol 05 ◽  
pp. 299-306
Author(s):  
TERENCE G. LANGDON

Processing through the application of severe plastic deformation (SPD) provides a very attractive tool for the production of bulk ultrafine-grained materials. These materials typically have grain sizes in the submicrometer or nanometer ranges and they exhibit high strength at ambient temperature and, if the ultrafine grains are reasonably stable at elevated temperatures, they have a potential for use in superplastic forming operations. Several procedures are now available for applying SPD to metal samples but the most promising are Equal-Channel Angular Pressing (ECAP) and High-Pressure Torsion (HPT). This paper examines the basic principles of ECAP and HPT and describes some of the properties that may be achieved using these processing techniques.


2006 ◽  
Vol 503-504 ◽  
pp. 419-424
Author(s):  
Koichi Tsuchiya ◽  
M. Inuzuka ◽  
Akihide Hosokawa ◽  
Dacian Tomus ◽  
Hiroyuki Nakayama ◽  
...  

Thermal- and stress-induced martensitic transformation was investigated on TiNi shape memory alloys subjected to severe plastic deformation (SPD) by cold rolling. TEM observation revelaed the sample is a mixture of nanocrystalline and amorphous after 40% cold rolling. DSC analysis suggested that the martensitic transformation was suppressed when the thickness reduction was over 25% reduction. Aging at lower temperatures (573 ~ 673 K, 3.6 ks) restores the phase transformations, but to a limited extent. The stress-strain curves of nanocrystalline/amorphous TiNi are characterized by absence of stress-plateau and small hysteresis.


2008 ◽  
Vol 59 ◽  
pp. 156-161 ◽  
Author(s):  
I. Khmelevskaya ◽  
Sergey Prokoshkin ◽  
Vladimir Brailovski ◽  
K.E. Inaekyan ◽  
Vincent Demers ◽  
...  

The main functional properties (FP) of Ti-Ni Shape Memory Alloys (SMA) are their critical temperatures of martensitic transformations, their maximum completely recoverable strain (er,1 max) and maximum recovery stress (sr max). Control of the Ti-Ni-based SMA FP develops by forming well-developed dislocation substructures or ultrafine-grained structures using various modes of thermomechanical treatment (TMT), including severe plastic deformation (SPD). The present work shows that TMT, including SPD, under conditions of high pressure torsion (HPT), equal-channel angular pressing (ECAP) or severe cold rolling followed by post-deformation annealing (PDA), which creates nanocrystalline or submicrocrystalline structures, is more beneficial from SMA FP point of view than does traditional TMT creating well-developed dislocation substructure. ECAP and low-temperature TMT by cold rolling followed by PDA allows formation of submicrocrystalline or nanocrystalline structures with grain size from 20 to 300 nm in bulk, and long-size samples of Ti-50.0; 50.6; 50.7%Ni and Ti-47%Ni-3%Fe alloys. The best combination of FP: sr max =1400 MPa and er,1 max=8%, is reached in Ti-Ni SMA after LTMT with e=1.9 followed by annealing at 400°C which results in nanocrystalline (grain size of 50 to 80 nm) structure formation. Application of ultrafine-grained SMA results in decrease in metal consumption for various medical implants and devices based on shape memory and superelastiсity effects.


Sign in / Sign up

Export Citation Format

Share Document