scholarly journals Controlled Nanostructuration of Cobalt Oxyhydroxide Electrode Material for Hybrid Supercapacitors

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2325
Author(s):  
Ronan Invernizzi ◽  
Liliane Guerlou-Demourgues ◽  
François Weill ◽  
Alexia Lemoine ◽  
Marie-Anne Dourges ◽  
...  

Nanostructuration is one of the most promising strategies to develop performant electrode materials for energy storage devices, such as hybrid supercapacitors. In this work, we studied the influence of precipitation medium and the use of a series of 1-alkyl-3-methylimidazolium bromide ionic liquids for the nanostructuration of β(III) cobalt oxyhydroxides. Then, the effect of the nanostructuration and the impact of the different ionic liquids used during synthesis were investigated in terms of energy storage performances. First, we demonstrated that forward precipitation, in a cobalt-rich medium, leads to smaller particles with higher specific surface areas (SSA) and an enhanced mesoporosity. Introduction of ionic liquids (ILs) in the precipitation medium further strongly increased the specific surface area and the mesoporosity to achieve well-nanostructured materials with a very high SSA of 265 m2/g and porosity of 0.43 cm3/g. Additionally, we showed that ILs used as surfactant and template also functionalize the nanomaterial surface, leading to a beneficial synergy between the highly ionic conductive IL and the cobalt oxyhydroxide, which lowers the resistance charge transfer and improves the specific capacity. The nature of the ionic liquid had an important influence on the final electrochemical properties and the best performances were reached with the ionic liquid containing the longest alkyl chain.

2020 ◽  
Author(s):  
Alexander Schlaich ◽  
Dongliang Jin ◽  
Lyderic Bocquet ◽  
Benoit Coasne

Abstract Of particular relevance to energy storage, electrochemistry and catalysis, ionic and dipolar liquids display a wealth of unexpected fundamental behaviors – in particular in confinement. Beyond now well-documented adsorption, overscreening and crowding effects1,2,3, recent experiments have highlighted novel phenomena such as unconventional screening4 and the impact of the electronic nature – metallic versus insulating – of the confining surface on wetting/phase transitions5,6. Such behaviors, which challenge existing theoretical and numerical modeling frameworks, point to the need for new powerful tools to embrace the properties of confined ionic/dipolar liquids. Here, we introduce a novel atom-scale approach which allows for a versatile description of electronic screening while capturing all molecular aspects inherent to molecular fluids in nanoconfined/interfacial environments. While state of the art molecular simulation strategies only consider perfect metal or insulator surfaces, we build on the Thomas-Fermi formalism for electronic screening to develop an effective approach that allows dealing with any imperfect metal between these asymptotes. The core of our approach is to describe electrostatic interactions within the metal through the behavior of a `virtual' Thomas-Fermi fluid of charged particles, whose Debye length sets the Thomas-Fermi screening length λ in the metal. This easy-to-implement molecular method captures the electrostatic interaction decay upon varying λ from insulator to perfect metal conditions, while describing very accurately the capacitance behavior – and hence the electrochemical properties – of the metallic confining medium. By applying this strategy to a nanoconfined ionic liquid, we demonstrate an unprecedented wetting transition upon switching the confining medium from insulating to metallic. This novel approach provides a powerful framework to predict the unsual behavior of ionic liquids, in particular inside nanoporous metallic structures, with direct applications for energy storage and electrochemistry.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1425
Author(s):  
Di Jiang ◽  
Chuanying Wei ◽  
Ziyang Zhu ◽  
Xiaohui Xu ◽  
Min Lu ◽  
...  

Metal organic frameworks (MOFs) have been rapidly developed in the application of electrode materials due to their controllable morphology and ultra-high porosity. In this research, flower-like layered nickel-based bimetallic MOFs microspheres with different metal central ions were synthesized by solvothermal method. Compared with Ni-MOFs, the optimization of the specific capacitance of NiCo-MOFs and NiMn-MOFs was been confirmed. For example, the specific capacitance of NiCo-MOFs can reach 882 F·g−1 at 0.5 A·g−1 while maintaining satisfactory cycle life (the specific capacity remains 90.1% of the initial value after 3000 charge-discharge cycles at 5 A·g−1). In addition, the NiCo-MOFs//AC HSCs, which are composed of NiCo-MOFs and activated carbon (AC), achieved a maximum energy density of 18.33 Wh·kg−1 at a power density of 400 W·kg−1, and showed satisfactory cycle life (82.4% after 3000 cycles). These outstanding electrochemical properties can be ascribed to the synergistic effect between metal ions, the optimized conductivity, and the unique layered stacked flower structure, which provides a smooth transmission channel for electrons/ions. In addition, this research gives a general method for the application of MOFs in the field of supercapacitors.


2018 ◽  
Vol 386 ◽  
pp. 359-364
Author(s):  
Yury M. Nikolenko ◽  
Denis P. Opra ◽  
Alexander K. Tsvetnikov ◽  
Alexander Yu. Ustinov ◽  
Valery G. Kuryavyi ◽  
...  

The hydrolytic lignin derivatives have been prepared via its physical activation (high-temperature heating in vacuum) followed by chemical modification (fluorination). The obtained products were characterized using scanning electron microscopy, X-ray diffraction, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. It was found that the graphitized product of thermal activation up to 1000 °C at a low rate of < 2 °C/min under high vacuum shows an enhanced specific surface area (215 m2/g), that makes its potentially useful as sorbent, catalytic substrate or electrode material. To clarify the potentialities of hydrolytic lignin derivatives for energy storage and conversion, the electrochemical system with metallic lithium anode was applied. The galvanostatic discharge of battery at a current density of 100 μA/cm2between 3.0 and 0.5 V shows that the specific capacity of thermally activated derivative is equal to 845 mA·h/g, while the untreated lignin yields only 190 mA·h/g. The improve of the electrochemical performance of product originates from its graphitization, increasing electronic conductivity, and, possibly, enhanced ability to adsorb of oxygen. The fluorination of both the lignin and its thermally activated form results in higher operating voltage of battery, as seems, due to the involvement of fluorine bound to carbon in electrochemical process.


Author(s):  
Feng Shi ◽  
Quanrun Liu

Background: As an emerging carbon nanomaterial, graphene quantum dots (GQDs) have shown great potential application in new energy storage devices due to their unique small size effect and abundant edge active sites. This work introduces the main synthesis strategies of GQDs, which includes top-down and bottom-up methods; the application examples of GQDs and GQDs-based composites in energy storage are reviewed, and more, the unique advantages of GQDs are used in supercapacitors, Lithium-ion batteries (LIBs) and Lithium-sulfur batteries (Li–S batteries) are highlighted. The problems and development prospects in this growing area are also discussed. Method: We conducted a detailed search of “the application of GQDs in energy storage devices” in the published papers and the public patents based on Web of Science database in the period from 2014 to 2020. The corresponding literature was carefully evaluated and analyzed. Results: Sixty papers and twenty-eight recent patents were included in this mini-review. The significant advances in the recent years are summarized with comparative and balanced discussion. Thanks to the unique properties of large specific surface area, high conductivity and abundant active sites, GQDs have unparalleled potential application for new energy storage, especially improving the specific capacity and cycle stability of supercapacitors, LIBs and Li-S batteries. Conclusion: The findings of this mini-review confirm the importance of GQDs, show the enhanced electrochemical performance in supercapacitors, LIBs and Li-S batteries, and also provide a helpful guide to design and fabricate highefficiency electrode materials.


Author(s):  
Juan Yu ◽  
Xuyang Wang ◽  
Jiaxin Peng ◽  
Xuefeng Jia ◽  
Linbo Li ◽  
...  

Abstract Biomass-activated carbon materials are promising electrode materials for lithium-ion hybrid capacitors (LiCs) because of their natural hierarchical pore structure. The efficient utilization of structural pores in activated carbon is very important for their electrochemical performance. Herein, porous biomass-activated carbon (PAC) with large specific surface area was prepared using a one-step activation method with biomass waste as the carbon source and ZnCl2 as the activator. To further improve its pore structure utilization efficiency, the PAC was doped with nitrogen using urea as the nitrogen source. The experimental results confirmed that PAC-1 with a high nitrogen doping level of 4.66% exhibited the most efficient pore utilization among all the samples investigated in this study. PAC-1 exhibited 92% capacity retention after 8000 cycles, showing good cycling stability. Then, to maximize the utilization of high-efficiency energy storage devices, LiNi0.8Co0.15Al0.05O2 (NCA), a promising cathode material for lithium-ion batteries with high specific capacity, was compounded with PAC-1 in different ratios to obtain NCA@PC composites. The NCA@PC-9 composite exhibited excellent capacitance in LiCs and an energy density of 210.9 Wh kg-1 at a high power density of 13.3 kW kg-1. These results provide guidelines for the design of high-performance and low-cost energy storage devices.


2020 ◽  
Vol 22 (43) ◽  
pp. 25255-25263
Author(s):  
Sandeep Kumar ◽  
Navleen Kaur ◽  
Venus Singh Mithu

The impact of increasing concentration of imidazolium-based ionic liquids ([CnMIM]+[Br]−) on the structural integrity of large unilamellar vesicles (LUVs) made of pure phosphatidylcholine (PC) and phosphatidylglycerol (PG) lipids.


2014 ◽  
Vol 16 (39) ◽  
pp. 21340-21348 ◽  
Author(s):  
Catarina M. S. S. Neves ◽  
Kiki A. Kurnia ◽  
Karina Shimizu ◽  
Isabel M. Marrucho ◽  
Luís Paulo N. Rebelo ◽  
...  

The presence of fluorinated alkyl chains in ionic liquids is quite relevant regarding their thermophysical properties and aqueous phase behaviour.


Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2263 ◽  
Author(s):  
Xiaoning Wang ◽  
Dan Wu ◽  
Xinhui Song ◽  
Wei Du ◽  
Xiangjin Zhao ◽  
...  

Polyaniline has been widely used in high-performance pseudocapacitors, due to its low cost, easy synthesis, and high theoretical specific capacitance. However, the poor mechanical properties of polyaniline restrict its further development. Compared with polyaniline, functionalized carbon materials have excellent physical and chemical properties, such as porous structures, excellent specific surface area, good conductivity, and accessibility to active sites. However, it should not be neglected that the specific capacity of carbon materials is usually unsatisfactory. There is an effective strategy to combine carbon materials with polyaniline by a hybridization approach to achieve a positive synergistic effect. After that, the energy storage performance of carbon/polyaniline hybridization material has been significantly improved, making it a promising and important electrode material for supercapacitors. To date, significant progress has been made in the synthesis of various carbon/polyaniline binary composite electrode materials. In this review, the corresponding properties and applications of polyaniline and carbon hybrid materials in the energy storage field are briefly reviewed. According to the classification of different types of functionalized carbon materials, this article focuses on the recent progress in carbon/polyaniline hybrid materials, and further analyzes their corresponding properties to provide guidance for the design, synthesis, and component optimization for high-performance supercapacitors.


2020 ◽  
Vol 49 (30) ◽  
pp. 10421-10430 ◽  
Author(s):  
Youjing Li ◽  
Weiwei Li ◽  
Cui Yang ◽  
Kai Tao ◽  
Qingxiang Ma ◽  
...  

1D porous S-doped Co3O4 nanorods with rich oxygen vacancies and enhanced energy storage capability were engineered by a coordination polymer-engaged strategy.


Sign in / Sign up

Export Citation Format

Share Document