precipitation medium
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 5)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 6 (7) ◽  
pp. 94
Author(s):  
Salmabanu Luhar ◽  
Ismail Luhar ◽  
Faiz Uddin Ahmed Shaikh

It is a universal fact that concrete is one of the most employed construction materials and hence its exigency is booming at a rocket pace, which in turn, has resulted in a titanic demand of ordinary Portland cement. Regrettably, the production of this essential binder of concrete is not merely found to consume restricted natural resources but also found to be associated with emission of carbon dioxide—a primary greenhouse gas (GHG) which is directly answerable to earth heating, resulting in the gigantic dilemma of global warming. Nowadays, in order to address all these impasses, researchers are attracted to innovative Geopolymer concrete technology. However, crack development of various sizes within the concrete is inevitable irrespective of its kind, mix design, etc., owing to external and internal factors viz., over-loading, exposure to severe environments, shrinkage, or error in design, etc., which need to be sealed otherwise these openings permits CO2, water, fluids, chemicals, harmful gases, etc., to pass through reducing service life and ultimately causing the failure of concrete structures in the long term. That is why instant repairs of these cracks are essential, but manual mends are time-consuming and costly too. Hence, self-healing of cracks is desirable to ease their maintenances and repairs. Self-healing geopolymer concrete (SHGPC) is a revolutionary product extending the solution to all these predicaments. The present manuscript investigates the self-healing ability of geopolymer paste, geopolymer mortar, and geopolymer concrete—a slag-based fiber-reinforced and a variety of other composites that endow with multifunction have also been compared, keeping the constant ratio of water to the binder. Additionally, the feasibility of bacteria in a metakaolin-based geopolymer concrete for self-healing the cracks employing Bacteria-Sporosarcina pasteurii, producing Microbial Carbonate Precipitations (MCP), was taken into account with leakage and the healing process in a precipitation medium. Several self-healing mechanisms, assistances, applications, and challenges of every strategy are accentuated, compared with their impacts as a practicable solution of autogenously-healing mechanisms while active concretes are subjected to deterioration, corrosion, cracking, and degradation have also been reviewed systematically.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2325
Author(s):  
Ronan Invernizzi ◽  
Liliane Guerlou-Demourgues ◽  
François Weill ◽  
Alexia Lemoine ◽  
Marie-Anne Dourges ◽  
...  

Nanostructuration is one of the most promising strategies to develop performant electrode materials for energy storage devices, such as hybrid supercapacitors. In this work, we studied the influence of precipitation medium and the use of a series of 1-alkyl-3-methylimidazolium bromide ionic liquids for the nanostructuration of β(III) cobalt oxyhydroxides. Then, the effect of the nanostructuration and the impact of the different ionic liquids used during synthesis were investigated in terms of energy storage performances. First, we demonstrated that forward precipitation, in a cobalt-rich medium, leads to smaller particles with higher specific surface areas (SSA) and an enhanced mesoporosity. Introduction of ionic liquids (ILs) in the precipitation medium further strongly increased the specific surface area and the mesoporosity to achieve well-nanostructured materials with a very high SSA of 265 m2/g and porosity of 0.43 cm3/g. Additionally, we showed that ILs used as surfactant and template also functionalize the nanomaterial surface, leading to a beneficial synergy between the highly ionic conductive IL and the cobalt oxyhydroxide, which lowers the resistance charge transfer and improves the specific capacity. The nature of the ionic liquid had an important influence on the final electrochemical properties and the best performances were reached with the ionic liquid containing the longest alkyl chain.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1114
Author(s):  
Jadin Zam S. Doctolero ◽  
Arnel B. Beltran ◽  
Marigold O. Uba ◽  
April Anne S. Tigue ◽  
Michael Angelo B. Promentilla

A sustainable solution for crack maintenance in geopolymers is necessary if they are to be the future of modern green construction. This study aims to develop self-healing biogeopolymers that could potentially rival bioconcrete. First, a suitable healing agent was selected from Bacillus subtilis, Bacillus sphaericus, and Bacillus megaterium by directly adding their spores in the geopolymers and subsequently exposing them to a precipitation medium for 14 days. Scanning electron microscope with energy-dispersive X-ray (SEM-EDX) analysis revealed the formation of mineral phases for B. subtilis and B. sphaericus. Next, the effect of biochar-immobilization and co-culturing (B. sphaericus and B. thuringiensis) on the healing efficiencies of the geopolymers were tested and optimized by measuring their ultrasonic pulse velocities weekly over a 28-day healing period. The results show that using co-cultured bacteria significantly improved the observed efficiencies, while biochar-immobilization had a weak effect, but yielded an optimum response between 0.3–0.4 g/mL. The maximum crack width sealed was 0.65 mm. Through SEM-EDX and FTIR analyses, the precipitates in the cracks were identified to be mainly CaCO3. With that, there is potential in developing self-healing biogeopolymers using biochar-immobilized spores of bacterial cultures.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 671
Author(s):  
Massimo Migliori ◽  
Antonio Condello ◽  
Francesco Dalena ◽  
Enrico Catizzone ◽  
Girolamo Giordano

The assessment of the catalytic performance of “hybrid” metal/zeolite catalysts (based on FER or MFI structure and CuZnZr metal complexes) in the methanol dehydration step to DME has been studied in this work. The results clearly show that there is an important effect of the interaction between metal and acid sites affecting the acid catalyst performances. Additionally, deactivation, studied by means of a Timo-on-Stream (TOS) test, was affected by the type of zeolite structure used for hybrid catalyst preparation. The decrease in DME selectivity can be attributed to the cooperation of metal and acid sites in the production of different compounds (mainly methyl formate and dimethoxy methane) converting methanol and DME. The presence of these compounds (indicating different reaction pathways active) was found to be dependent on the zeolite structure and on the type of co-precipitation medium (water or ethanol) used to prepare the hybrid catalyst.


2020 ◽  
Vol 10 (8) ◽  
pp. 2905 ◽  
Author(s):  
Hadas Raveh-Amit ◽  
Michael Tsesarsky

Microbial-induced calcite precipitation (MICP) is a soil amelioration technique aiming to mitigate different environmental and engineering concerns, including desertification, soil erosion, and soil liquefaction, among others. The hydrolysis of urea, catalyzed by the microbial enzyme urease, is considered the most efficient microbial pathway for MICP. Biostimulated MICP relies on the enhancement of indigenous urea-hydrolyzing bacteria by providing an appropriate enrichment and precipitation medium, as opposed to bioaugmentation, which requires introducing large volumes of exogenous bacterial cultures into the treated soil along with a growth and precipitation medium. Biostimulated MICP in desert soils is challenging as the total carbon content and the bacterial abundance are considerably low. In this study, we examined the biostimulation potential in soils from the Negev Desert, Israel, for the purpose of mitigation of topsoil erosion in arid environments. Incubating soil samples in urea and enrichment media demonstrated effective urea hydrolysis leading to pH increase, which is necessary for calcite precipitation. Biostimulation rates were found to increase with concentrations of energy (carbon) source in the stimulation media, reaching its maximal levels within 3 to 6 days. Following stimulation, calcium carbonate precipitation was induced by spiking stimulated bacteria in precipitation (CaCl2 enriched) media. The results of our research demonstrate that biostimulated MICP is feasible in the low-carbon, mineral soils of the northern Negev Desert in Israel.


2010 ◽  
Vol 123-125 ◽  
pp. 727-730 ◽  
Author(s):  
Abdulaziz A. Bagabas ◽  
Khalil A. Ziq ◽  
Ahmad F. Salem ◽  
Emad S. Addurihem

Nanoscale particle size of metal oxides and hydroxides showed enhanced various physical properties and performance. We established a simple, cost-effective, room-temperature (RT) precipitation method for the preparation of the magnetic, first-raw transition metal (TM) hydrated oxide and hydroxide nanoparticles. This method is based on the use of the TM nitrate, as the metal source, and cyclohexylamine (CHA), as a precipitating agent, either in the water (H2O) or ethanol (EtOH) medium. We found that the precipitation medium and the identity of precipitated TM strongly affect the morphology, particle size, and magnetism of the product. The morphology varies from spherical, to rectangular, to rod shape; while the size varies in the range of 5-30 nm. All samples showed paramagnetic behavior with Curie temperatures span over a wide range (20-150K). Huge hysteresis looses has been observed for manganese (Mn) sample, prepared in H2O. The coercively (Hc) at 4.2K for this sample is about 1.5T, which is comparable to the strongest permanent magnets (Nd-based magnets) available at room temperature. The energy product (Hc*MR) is about 4.5*105 (emu/g)Oe.


Sign in / Sign up

Export Citation Format

Share Document