scholarly journals Tailoring a Refractory High Entropy Alloy by Powder Metallurgy Process Optimization

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5796
Author(s):  
Larissa Moravcikova-Gouvea ◽  
Igor Moravcik ◽  
Vaclav Pouchly ◽  
Zuzana Kovacova ◽  
Michael Kitzmantel ◽  
...  

This paper reports the microstructural evolution and mechanical properties of a low-density Al0.3NbTa0.8Ti1.5V0.2Zr refractory high-entropy alloy (RHEA) prepared by means of a combination of mechanical alloying and spark plasma sintering (SPS). Prior to sintering, the morphology, chemical homogeneity and crystal structures of the powders were thoroughly investigated by varying the milling times to find optimal conditions for densification. The sintered bulk RHEAs were produced with diverse feedstock powder conditions. The microstructural development of the materials was analyzed in terms of phase composition and constitution, chemical homogeneity, and crystallographic properties. Hardness and elastic constants also were measured. The calculation of phase diagrams (CALPHAD) was performed to predict the phase changes in the alloy, and the results were compared with the experiments. Milling time seems to play a significant role in the contamination level of the sintered materials. Even though a protective atmosphere was used in the entire manufacturing process, carbide formation was detected in the sintered bulks as early as after 3 h of powder milling. Oxides were observed after 30 h due to wear of the high-carbon steel milling media and SPS consolidation. Ten hours of milling seems sufficient for achieving an optimal equilibrium between microstructural homogeneity and refinement, high hardness and minimal contamination.

Author(s):  
Adrien Fourmont ◽  
Sophie Le Gallet ◽  
Khalid Hoummada ◽  
Marion Descoins ◽  
Clara Desgranges ◽  
...  

2019 ◽  
Vol 813 ◽  
pp. 159-164
Author(s):  
Carlos Alberto Souto ◽  
Gustavo Faria Melo da Silva ◽  
Laura Angelica Ardila Rodriguez ◽  
Aline C. de Oliveira ◽  
Kátia Regina Cardoso

Coatings with high entropy alloys of the AlCoCrFeNiV system were obtained by selective laser melting on low carbon steel substrates. The effect of the variation of the Fe and V contents as well as the laser processing parameters in the development of the coating were evaluated. The coatings were obtained from the simple powder mixtures of the high purity elemental components in a planetary ball mill. The coatings were obtained by using CO2 laser with a power of 100 W, diameter of 0.16 mm, and scan speed varying from 3 to 12 mm/s. Phase constituents, microstructure and hardness were investigated by XRD, SEM, and microhardness tester, respectively. Wear resistance measurements were carried out by the micro-abrasion method using ball-cratering tests. The coatings presented good adhesion to the substrate and high hardness, of the order of 480 to 650 HV. Most homogeneous coating with nominal composition was obtained by using the higher scan speed, 12 mm/s. Vanadium addition increased hardness and gave rise to a high entropy alloy coating composed by BCC solid solutions. Ball cratering tests conducted on HEA layer showing improvement of material wear resistance, when compared to base substrate, decreasing up to 88% its wear rate, from 1.91x10-6 mm3/Nmm to 0.23x10-6 mm3/Nmm.


NANO ◽  
2018 ◽  
Vol 13 (09) ◽  
pp. 1850100 ◽  
Author(s):  
Rui-Feng Zhao ◽  
Bo Ren ◽  
Guo-Peng Zhang ◽  
Zhong-Xia Liu ◽  
Jian-Jian Zhang

The CrCuFeMnNi high entropy alloy (HEA) powder was synthesized by mechanical alloying. The effects of milling time and subsequent annealing on the structure evolution, thermostability and magnetic property were investigated. After 50[Formula: see text]h of milling, the CrCuFeMnNi HEA powder consisted of a major FCC phase and a small amount of BCC phase. The crystallite size and strain lattice of 50[Formula: see text]h-ball-milled CrCuFeMnNi HEA powder were 12[Formula: see text]nm and 1.02%, respectively. The powder exhibited refined morphology and excellent chemical homogeneity. The supersaturated solid solution structure of the as-milled HEA powder transformed into FCC1, FCC2, a small amount of BCC and [Formula: see text] phase in annealed state. Most of the BCC phase decomposed into FCC (mainly FCC2 phase) and [Formula: see text] phases, and the dynamic phase transition was almost in equilibrium at 900[Formula: see text]C. The saturated magnetization and coercivity force of the 50[Formula: see text]h-ball-milled CrCuFeMnNi HEA powder were respectively 16.1[Formula: see text]emu/g and 56.2[Formula: see text]Oe.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2225 ◽  
Author(s):  
Martin Löbel ◽  
Thomas Lindner ◽  
Thomas Lampke

High hardness and good wear resistance have been revealed for the high-entropy alloy (HEA) system AlCoCrFeNiTi, confirming the potential for surface protection applications. Detailed studies to investigate the microstructure and phase formation have been carried out using different production routes. Powder metallurgical technologies allow for much higher flexibility in the customisation of materials compared to casting processes. Particularly, spark plasma sintering (SPS) enables the fast processing of the feedstock, the suppression of grain coarsening and the production of samples with a low porosity. Furthermore, solid lubricants can be incorporated for the improvement of wear resistance and the reduction of the coefficient of friction (COF). This study focuses on the production of AlCoCrFeNiTi composites comprising solid lubricants. Bulk materials with a MoS2 content of up to 15 wt % were produced. The wear resistance and COF were investigated in detail under sliding wear conditions in ball-on-disk tests at room temperature and elevated temperature. At least 10 wt % of MoS2 was required to improve the wear behaviour in both test conditions. Furthermore, the effects of the production route and the content of solid lubricant on microstructure formation and phase composition were investigated. Two major body-centred cubic (bcc) phases were detected in accordance with the feedstock. The formation of additional phases indicated the decomposition of MoS2.


Author(s):  
Yulin Qin ◽  
Yipeng Wang ◽  
Shixue Guan ◽  
Chuqi Wang ◽  
Bo Jiang ◽  
...  

Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 406 ◽  
Author(s):  
Sigrun N. Karlsdottir ◽  
Laura E. Geambazu ◽  
Ioana Csaki ◽  
Andri I. Thorhallsson ◽  
Radu Stefanoiu ◽  
...  

In this work, a CoCrFeNiMo high-entropy alloy (HEA) material was prepared by the vacuum arc melting (VAM) method and used for electro-spark deposition (ESD). The purpose of this study was to investigate the phase evolution and microstructure of the CoCrFeNiMo HEA as as-cast and electro-spark-deposited (ESD) coating to assess its suitability for corrosvie environments encountered in geothermal energy production. The composition, morphology, and structure of the bulk material and the coating were analyzed using scanning electron microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The hardness of the bulk material was measured to access the mechanical properties when preselecting the composition to be pursued for the ESD coating technique. For the same purpose, electrochemical corrosion tests were performed in a 3.5 wt.% NaCl solution on the bulk material. The results showed the VAM CoCrFeNiMo HEA material had high hardness (593 HV) and low corrosion rates (0.0072 mm/year), which is promising for the high wear and corrosion resistance needed in the harsh geothermal environment. The results from the phase evolution, chemical composition, and microstructural analysis showed an adherent and dense coating with the ESD technique, but with some variance in the distribution of elements in the coating. The crystal structure of the as-cast electrode CoCrFeNiMo material was identified as face centered cubic with XRD, but additional BCC and potentially σ phase was formed for the CoCrFeNiMo coating.


2018 ◽  
Vol 928 ◽  
pp. 183-187 ◽  
Author(s):  
Khin Sandar Tun ◽  
Manoj Gupta

In this research study, two light weight multi-component high entropy alloys (HEAs) consisting of six constituent elements were synthesized. The high entropy alloy having a chemical composition of Mg35Al33Li15Zn7Ca5Y5(atomic pct.) had a density of 2.25 g/cm3, while the high entropy alloy having a composition of Mg35Al33Li15Zn7Ca5Cu5(atomic pct.) had a density of 2.27 g/cm3. The strategy of non-equiatomic composition, high entropy of mixing coupled with low density was applied in designing the alloy systems. Disintegrated melt deposition (DMD) technique was used to synthesize the materials and characterization studies were performed on as-cast materials. The present study emphasizes on examining and understanding the microstructural development in the two light weight high entropy alloys. The formation and presence of phases and microstructural evolution were studied by interchanging yttrium and copper. Microstructural observations revealed presence of multiple phases in the developed alloys and the simplification of the microstructure when copper is used instead of yttrium. Microhardness results revealed a significant increase in hardness of of both the HEAs (3.8 – 4.2 times) when compared to AZ31 commercial magnesium alloy.Keywords: High Entropy Alloy, Magnesium, Aluminum, Casting, Microstructure


Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 146 ◽  
Author(s):  
Wei-Bing Liao ◽  
Hongti Zhang ◽  
Zhi-Yuan Liu ◽  
Pei-Feng Li ◽  
Jian-Jun Huang ◽  
...  

Recently, high-entropy alloy thin films (HEATFs) with nanocrystalline structures and high hardness were developed by magnetron sputtering technique and have exciting potential to make small structure devices and precision instruments with sizes ranging from nanometers to micrometers. However, the strength and deformation mechanisms are still unclear. In this work, nanocrystalline Al0.3CoCrFeNi HEATFs with a thickness of ~4 μm were prepared. The microstructures of the thin films were comprehensively characterized, and the mechanical properties were systematically studied. It was found that the thin film was smooth, with a roughness of less than 5 nm. The chemical composition of the high entropy alloy thin film was homogeneous with a main single face-centered cubic (FCC) structure. Furthermore, it was observed that the hardness and the yield strength of the high-entropy alloy thin film was about three times that of the bulk samples, and the plastic deformation was inhomogeneous. Our results could provide an in-depth understanding of the mechanics and deformation mechanism for future design of nanocrystalline HEATFs with desired properties.


2010 ◽  
Vol 650 ◽  
pp. 265-271 ◽  
Author(s):  
Rui Li ◽  
Jia Cheng Gao ◽  
Ke Fan

In this paper, alloys with compositions of Mgx(MnAlZnCu)100-x (x: atomic percentage; x=20, 33, 43, 45.6 and 50 respectively) were designed by using the strategy of equiatomic ratio and high entropy of mixing. Microstructure and mechanical properties of the new high entropy alloy were studied. The alloys were prepared by induction melting and then were cast in a copper mold in air. The alloy samples were examined by microhardness tester, XRD, SEM, thermal analyzer and testing machine for material strength. Alloys were composed mainly of h.c.p phase and Al-Mn icosahedral quasicrystal phases. The alloys exhibited moderate densities which were from 4.29g•cm-3 to 2.20g•cm-3, high hardness (429HV-178HV) and high compression strength (500MPa-400MPa) at room temperature. The extensibility was increased with Mg from 20at% (atomic percentage) to 50at%.


Sign in / Sign up

Export Citation Format

Share Document