scholarly journals A Study of Third Hankel Determinant Problem for Certain Subfamilies of Analytic Functions Involving Cardioid Domain

Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 418 ◽  
Author(s):  
Lei Shi ◽  
Izaz Ali ◽  
Muhammad Arif ◽  
Nak Eun Cho ◽  
Shehzad Hussain ◽  
...  

In the present article, we consider certain subfamilies of analytic functions connected with the cardioid domain in the region of the unit disk. The purpose of this article is to investigate the estimates of the third Hankel determinant for these families. Further, the same bounds have been investigated for two-fold and three-fold symmetric functions.

Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 501 ◽  
Author(s):  
Hai-Yan Zhang ◽  
Huo Tang ◽  
Xiao-Meng Niu

Let S l * denote the class of analytic functions f in the open unit disk D = { z : | z | < 1 } normalized by f ( 0 ) = f ′ ( 0 ) − 1 = 0 , which is subordinate to exponential function, z f ′ ( z ) f ( z ) ≺ e z ( z ∈ D ) . In this paper, we aim to investigate the third-order Hankel determinant H 3 ( 1 ) for this function class S l * associated with exponential function and obtain the upper bound of the determinant H 3 ( 1 ) . Meanwhile, we give two examples to illustrate the results obtained.


2021 ◽  
Vol 7 (2) ◽  
pp. 3133-3149
Author(s):  
Muhammad Ghaffar Khan ◽  
◽  
Nak Eun Cho ◽  
Timilehin Gideon Shaba ◽  
Bakhtiar Ahmad ◽  
...  

<abstract><p>The main objective of the present article is to define the class of bounded turning functions associated with modified sigmoid function. Also we investigate and determine sharp results for the estimates of four initial coefficients, Fekete-Szegö functional, the second-order Hankel determinant, Zalcman conjucture and Krushkal inequality. Furthermore, we evaluate bounds of the third and fourth-order Hankel determinants for the class and for the 2-fold and 3-fold symmetric functions.</p></abstract>


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 598 ◽  
Author(s):  
Lei Shi ◽  
Hari Mohan Srivastava ◽  
Muhammad Arif ◽  
Shehzad Hussain ◽  
Hassan Khan

In the current article, we consider certain subfamilies S e ∗ and C e of univalent functions associated with exponential functions which are symmetric along real axis in the region of open unit disk. For these classes our aim is to find the bounds of Hankel determinant of order three. Further, the estimate of third Hankel determinant for the family S e ∗ in this work improve the bounds which was investigated recently. Moreover, the same bounds have been investigated for 2-fold symmetric and 3-fold symmetric functions.


2021 ◽  
Vol 33 (4) ◽  
pp. 973-986
Author(s):  
Young Jae Sim ◽  
Paweł Zaprawa

Abstract In recent years, the problem of estimating Hankel determinants has attracted the attention of many mathematicians. Their research have been focused mainly on deriving the bounds of H 2 , 2 {H_{2,2}} or H 3 , 1 {H_{3,1}} over different subclasses of 𝒮 {\mathcal{S}} . Only in a few papers third Hankel determinants for non-univalent functions were considered. In this paper, we consider two classes of analytic functions with real coefficients. The first one is the class 𝒯 {\mathcal{T}} of typically real functions. The second object of our interest is 𝒦 ℝ ⁢ ( i ) {\mathcal{K}_{\mathbb{R}}(i)} , the class of functions with real coefficients which are convex in the direction of the imaginary axis. In both classes, we find lower and upper bounds of the third Hankel determinant. The results are sharp.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 721 ◽  
Author(s):  
Oh Sang Kwon ◽  
Young Jae Sim

Let SR * be the class of starlike functions with real coefficients, i.e., the class of analytic functions f which satisfy the condition f ( 0 ) = 0 = f ′ ( 0 ) − 1 , Re { z f ′ ( z ) / f ( z ) } > 0 , for z ∈ D : = { z ∈ C : | z | < 1 } and a n : = f ( n ) ( 0 ) / n ! is real for all n ∈ N . In the present paper, it is obtained that the sharp inequalities − 4 / 9 ≤ H 3 , 1 ( f ) ≤ 3 / 9 hold for f ∈ SR * , where H 3 , 1 ( f ) is the third Hankel determinant of order 3 defined by H 3 , 1 ( f ) = a 3 ( a 2 a 4 − a 3 2 ) − a 4 ( a 4 − a 2 a 3 ) + a 5 ( a 3 − a 2 2 ) .


2017 ◽  
Vol 25 (3) ◽  
pp. 199-214
Author(s):  
S.P. Vijayalakshmi ◽  
T.V. Sudharsan ◽  
Daniel Breaz ◽  
K.G. Subramanian

Abstract Let A be the class of analytic functions f(z) in the unit disc ∆ = {z ∈ C : |z| < 1g with the Taylor series expansion about the origin given by f(z) = z+ ∑n=2∞ anzn, z ∈∆ : The focus of this paper is on deriving upper bounds for the third order Hankel determinant H3(1) for two new subclasses of A.


2018 ◽  
Vol 97 (3) ◽  
pp. 435-445 ◽  
Author(s):  
BOGUMIŁA KOWALCZYK ◽  
ADAM LECKO ◽  
YOUNG JAE SIM

We prove the sharp inequality $|H_{3,1}(f)|\leq 4/135$ for convex functions, that is, for analytic functions $f$ with $a_{n}:=f^{(n)}(0)/n!,~n\in \mathbb{N}$, such that $$\begin{eqnarray}Re\bigg\{1+\frac{zf^{\prime \prime }(z)}{f^{\prime }(z)}\bigg\}>0\quad \text{for}~z\in \mathbb{D}:=\{z\in \mathbb{C}:|z|<1\},\end{eqnarray}$$ where $H_{3,1}(f)$ is the third Hankel determinant $$\begin{eqnarray}H_{3,1}(f):=\left|\begin{array}{@{}ccc@{}}a_{1} & a_{2} & a_{3}\\ a_{2} & a_{3} & a_{4}\\ a_{3} & a_{4} & a_{5}\end{array}\right|.\end{eqnarray}$$


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1334
Author(s):  
Bilal Khan ◽  
Hari M. Srivastava ◽  
Nazar Khan ◽  
Maslina Darus ◽  
Muhammad Tahir ◽  
...  

First, by making use of the concept of basic (or q-) calculus, as well as the principle of subordination between analytic functions, generalization Rq(h) of the class R(h) of analytic functions, which are associated with the leaf-like domain in the open unit disk U, is given. Then, the coefficient estimates, the Fekete–Szegö problem, and the second-order Hankel determinant H2(1) for functions belonging to this class Rq(h) are investigated. Furthermore, similar results are examined and presented for the functions zf(z) and f−1(z). For the validity of our results, relevant connections with those in earlier works are also pointed out.


Filomat ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 227-245 ◽  
Author(s):  
Najla Alarifi ◽  
Rosihan Ali ◽  
V. Ravichandran

Let f be a normalized analytic function in the open unit disk of the complex plane satisfying zf'(z)/f(z) is subordinate to a given analytic function ?. A sharp bound is obtained for the second Hankel determinant of the kth-root transform z[f(zk)/zk]1/k. Best bounds for the Hankel determinant are also derived for the kth-root transform of several other classes, which include the class of ?-convex functions and ?-logarithmically convex functions. These bounds are expressed in terms of the coefficients of the given function ?, and thus connect with earlier known results for particular choices of ?.


Author(s):  
Timilehin Gideon Shaba ◽  
Abbas Kareem Wanas ◽  
Ismaila Omeiza Ibrahim

In present article, we introduce and study a certain family of analytic functions defined by Wanas operator in the open unit disk. We establish some important geometric properties for this family. Further we point out certain special cases for our results.


Sign in / Sign up

Export Citation Format

Share Document