scholarly journals On Differential Equations Characterizing Legendrian Submanifolds of Sasakian Space Forms

Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 150 ◽  
Author(s):  
Rifaqat Ali ◽  
Fatemah Mofarreh ◽  
Nadia Alluhaibi ◽  
Akram Ali ◽  
Iqbal Ahmad

In this paper, we give an estimate of the first eigenvalue of the Laplace operator on minimally immersed Legendrian submanifold N n in Sasakian space forms N ˜ 2 n + 1 ( ϵ ) . We prove that a minimal Legendrian submanifolds in a Sasakian space form is isometric to a standard sphere S n if the Ricci curvature satisfies an extrinsic condition which includes a gradient of a function, the constant holomorphic sectional curvature of the ambient space and a dimension of N n . We also obtain a Simons-type inequality for the same ambient space forms N ˜ 2 n + 1 ( ϵ ) .

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Lamia Saeed Alqahtani

In this paper, we give an estimate of the first eigenvalue of the Laplace operator on a Lagrangian submanifold M n minimally immersed in a complex space form. We provide sufficient conditions for a Lagrangian minimal submanifold in a complex space form with Ricci curvature bound to be isometric to a standard sphere S n . We also obtain Simons-type inequality for same ambient space form.


Filomat ◽  
2019 ◽  
Vol 33 (4) ◽  
pp. 1209-1215
Author(s):  
Aleksandar Sebekovic ◽  
Miroslava Petrovic-Torgasev ◽  
Anica Pantic

For Legendrian submanifolds Mn in Sasakian space forms ?M2n+1(c), I. Mihai obtained an inequality relating the normalised scalar curvature (intrinsic invariant) and the squared mean curvature and the normalised scalar normal curvature of M in the ambient space ?M (extrinsic invariants) which is called the generalised Wintgen inequality, characterising also the corresponding equality case. And a Legendrian submanifold Mn in Sasakian space forms ?M2n+1(c) is said to be generalised Wintgen ideal Legendrian submanifold of ?M2n+1(c) when it realises at everyone of its points the equality in such inequality. Characterisations based on some basic intrinsic symmetries involving the Riemann-Cristoffel curvature tensor, the Ricci tensor and the Weyl conformal curvature tensor belonging to the class of pseudosymmetries in the sense of Deszcz of such generalised Wintgen ideal Legendrian submanifolds are given.


2008 ◽  
Vol 51 (3) ◽  
pp. 448-459 ◽  
Author(s):  
Toru Sasahara

AbstractBiharmonic maps are defined as critical points of the bienergy. Every harmonic map is a stable biharmonic map. In this article, the stability of nonharmonic biharmonic Legendrian submanifolds in Sasakian space forms is discussed.


2020 ◽  
Vol 155 ◽  
pp. 103768 ◽  
Author(s):  
Jae Won Lee ◽  
Chul Woo Lee ◽  
Gabriel-Eduard Vîlcu

Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1151 ◽  
Author(s):  
Mohd. Aquib ◽  
Michel Nguiffo Boyom ◽  
Mohammad Hasan Shahid ◽  
Gabriel-Eduard Vîlcu

In this work, we first derive a generalized Wintgen type inequality for a Lagrangian submanifold in a generalized complex space form. Further, we extend this inequality to the case of bi-slant submanifolds in generalized complex and generalized Sasakian space forms and derive some applications in various slant cases. Finally, we obtain obstructions to the existence of non-flat generalized complex space forms and non-flat generalized Sasakian space forms in terms of dimension of the vector space of solutions to the first fundamental equation on such spaces.


2018 ◽  
Vol 50 (2) ◽  
pp. 155-164 ◽  
Author(s):  
Mohd Aquib ◽  
Mohammad Hasan Shahid

In this paper, we obtain the generalized Wintgen inequality for Legendrian submanifolds in Kenmotsu space forms and discuss the equality case of the inequality. Further, we discuss the inequality for bi-slant submanifold in the same ambient space and derive its application in various slant cases.


Sign in / Sign up

Export Citation Format

Share Document