scholarly journals Regularity in Topological Modules

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1580
Author(s):  
Francisco Javier Garcia-Pacheco

The framework of Functional Analysis is the theory of topological vector spaces over the real or complex field. The natural generalization of these objects are the topological modules over topological rings. Weakening the classical Functional Analysis results towards the scope of topological modules is a relatively new trend that has enriched the literature of Functional Analysis with deeper classical results as well as with pathological phenomena. Following this trend, it has been recently proved that every real or complex Hausdorff locally convex topological vector space with dimension greater than or equal to 2 has a balanced and absorbing subset with empty interior. Here we propose an extension of this result to topological modules over topological rings. A sufficient condition is provided to accomplish this extension. This sufficient condition is a new property in topological module theory called strong open property. On the other hand, topological regularity of closed balls and open balls in real or complex normed spaces is a trivial fact. Sufficient conditions, related to the strong open property, are provided on seminormed modules over an absolutely semivalued ring for closed balls to be regular closed and open balls to be regular open. These sufficient conditions are in fact characterizations when the seminormed module is the absolutely semivalued ring. These characterizations allow the provision of more examples of closed-unit neighborhoods of zero. Consequently, the closed-unit ball of any unital real Banach algebra is proved to be a closed-unit zero-neighborhood. We finally transport all these results to topological modules over topological rings to obtain nontrivial regular closed and regular open neighborhoods of zero. In particular, if M is a topological R-module and m∗∈M∗ is a continuous linear functional on M which is open as a map between topological spaces, then m∗−1(int(B)) is regular open and m∗−1(B) is regular closed, for B any closed-unit zero-neighborhood in R.

2020 ◽  
pp. 31-37
Author(s):  
A.Haydar Es ◽  

In this paper, the concept of neutrosophic soft Mengerness, neutrosophic soft near Mengerness and neutrosophic soft almost Mengerness are introduced and studied. Some characterizations of neutrosophic soft almost Mengerness in terms of neutrosophic soft regular open or neutrosophic soft regular closed are given.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Ankit Gupta ◽  
Ratna Dev Sarma

We define and study a new class of regular sets calledPS-regular sets. Properties of these sets are investigated for topological spaces and generalized topological spaces. Decompositions of regular open sets and regular closed sets are provided usingPS-regular sets. Semiconnectedness is characterized by usingPS-regular sets.PS-continuity and almostPS-continuity are introduced and investigated.


2020 ◽  
Vol 70 (2) ◽  
pp. 477-488
Author(s):  
Emilia Przemska

Abstract The question as to the number of sets obtainable from a given subset of a topological space using the operators derived by composing members of the set {b, i, ∨, ∧}, where b, i, ∨ and ∧ denote the closure operator, the interior operator, the binary operators corresponding to union and intersection, respectively, is called the Kuratowski {b, i, ∨, ∧}-problem. This problem has been solved independently by Sherman [21] and, Gardner and Jackson [13], where the resulting 34 plus identity operators were depicted in the Hasse diagram. In this paper we investigate the sets of fixed points of these operators. We show that there are at most 23 such families of subsets. Twelve of them are the topology, the family of all closed subsets plus, well known generalizations of open sets, plus the families of their complements. Each of the other 11 families forms a complete complemented lattice under the operations of join, meet and negation defined according to a uniform procedure. Two of them are the well known Boolean algebras formed by the regular open sets and regular closed sets, any of the others in general need not be a Boolean algebras.


2019 ◽  
Vol 18 (06) ◽  
pp. 1950119 ◽  
Author(s):  
Francisco Javier García-Pacheco ◽  
Pablo Piniella

We define the concepts of balanced set and absorbing set in modules over topological rings, which coincide with the usual concepts when restricting to topological vector spaces. We show that in a topological module over an absolute semi-valued ring whose invertibles approach [Formula: see text], every neighborhood of [Formula: see text] is absorbing. We also introduce the concept of total closed unit neighborhood of zero (total closed unit) and prove that the only total closed unit of the quaternions [Formula: see text] is its closed unit ball [Formula: see text]. On the other hand, we also prove that if [Formula: see text] is an absolute semi-valued unital real algebra, then its closed unit ball [Formula: see text] is a total closed unit. Finally, we study the geometry of modules via the extreme points and the internal points, showing that no internal point can be an extreme point and that absorbance is equivalent to having [Formula: see text] as an internal point.


2003 ◽  
Vol 10 (2) ◽  
pp. 209-222
Author(s):  
I. Bakhia

Abstract Functions of dimension modulo a (rather wide) class of spaces are considered and the conditions are found, under which the dimension of the product of spaces modulo these classes is equal to zero. Based on these results, the sufficient conditions are established, under which spaces of free topological semigroups (in the sense of Marxen) and spaces of free topological groups (in the sense of Markov and Graev) are zero-dimensional modulo classes of compact spaces.


2020 ◽  
Vol 18 (1) ◽  
pp. 1540-1551
Author(s):  
Jung Wook Lim ◽  
Dong Yeol Oh

Abstract Let ({\mathrm{\Gamma}},\le ) be a strictly ordered monoid, and let {{\mathrm{\Gamma}}}^{\ast }\left={\mathrm{\Gamma}}\backslash \{0\} . Let D\subseteq E be an extension of commutative rings with identity, and let I be a nonzero proper ideal of D. Set \begin{array}{l}D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {E}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(0)\in D\right\}\hspace{.5em}\text{and}\\ \hspace{0.2em}D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {D}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(\alpha )\in I,\hspace{.5em}\text{for}\hspace{.25em}\text{all}\hspace{.5em}\alpha \in {{\mathrm{\Gamma}}}^{\ast }\right\}.\end{array} In this paper, we give necessary conditions for the rings D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively ordered, and sufficient conditions for the rings D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively totally ordered. Moreover, we give a necessary and sufficient condition for the ring D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively totally ordered. As corollaries, we give equivalent conditions for the rings D+({X}_{1},\ldots ,{X}_{n})E{[}{X}_{1},\ldots ,{X}_{n}] and D+({X}_{1},\ldots ,{X}_{n})I{[}{X}_{1},\ldots ,{X}_{n}] to be Noetherian.


2000 ◽  
Vol 11 (03) ◽  
pp. 515-524
Author(s):  
TAKESI OKADOME

The paper deals with learning in the limit from positive data. After an introduction and overview of earlier results, we strengthen a result of Sato and Umayahara (1991) by establishing a necessary and sufficient condition for the satisfaction of Angluin's (1980) finite tell-tale condition. Our other two results show that two notions introduced here, the finite net property and the weak finite net property, lead to sufficient conditions for learning in the limit from positive data. Examples not solvable by earlier methods are also given.


2007 ◽  
Vol 7 (7) ◽  
pp. 624-638
Author(s):  
J. de Vicente

We study the separability of bipartite quantum systems in arbitrary dimensions using the Bloch representation of their density matrix. This approach enables us to find an alternative characterization of the separability problem, from which we derive a necessary condition and sufficient conditions for separability. For a certain class of states the necessary condition and a sufficient condition turn out to be equivalent, therefore yielding a necessary and sufficient condition. The proofs of the sufficient conditions are constructive, thus providing decompositions in pure product states for the states that satisfy them. We provide examples that show the ability of these conditions to detect entanglement. In particular, the necessary condition is proved to be strong enough to detect bound entangled states.


2004 ◽  
Vol 95 (2) ◽  
pp. 517-550 ◽  
Author(s):  
William M. Grove

This article first explains concepts in taxometrics, including the meaning of “taxon” in relation to taxometric procedures. It then mathematically develops the MAXSLOPE procedure of Grove and Meehl which relies on nonlinear regression of one taxometric indicator variable on another. Sufficient conditions for MAXSLOPE's validity are set forth. The relationship between the point of maximum regression slope (MAXSLOPE point) and the HITMAX cut, i.e., the point on a variable which, if used as a diagnostic cut-off score, yields maximum classification accuracy, is analyzed. A sufficient condition is given for the MAXSLOPE point to equal the HITMAX cut; however, most distributions have different MAXSLOPE and HITMAX points. Equations and an algorithm are spelled out for making a graphical test for the existence of a taxon, estimating taxometric parameters, and conducting consistency tests; the latter serve as stringent checks on the validity of a taxonic conjecture. The plausibility of assumptions made, in deriving MAXSLOPE equations, is discussed, and the qualitative effects of violations of these assumptions are explained.


Pythagoras ◽  
2010 ◽  
Vol 0 (71) ◽  
Author(s):  
Shunmugam Pillay ◽  
Poobhalan Pillay

The centre of mass G of a triangle has the property that the rays to the vertices from G sweep out triangles having equal areas. We show that such points, termed equipartitioning points in this paper, need not exist in other polygons. A necessary and sufficient condition for a quadrilateral to have an equipartitioning point is that one of its diagonals bisects the other. The general theorem, namely, necessary and sufficient conditions for equipartitioning points for arbitrary polygons to exist, is also stated and proved. When this happens, they are in general, distinct from the centre of mass. In parallelograms, and only in them, do the two points coincide.


Sign in / Sign up

Export Citation Format

Share Document