On the Loop Homology of a Certain Complex of RNA Structures
In this paper, we establish a topological framework of τ-structures to quantify the evolutionary transitions between two RNA sequence–structure pairs. τ-structures developed here consist of a pair of RNA secondary structures together with a non-crossing partial matching between the two backbones. The loop complex of a τ-structure captures the intersections of loops in both secondary structures. We compute the loop homology of τ-structures. We show that only the zeroth, first and second homology groups are free. In particular, we prove that the rank of the second homology group equals the number γ of certain arc-components in a τ-structure and that the rank of the first homology is given by γ−χ+1, where χ is the Euler characteristic of the loop complex.