scholarly journals New Criteria for Oscillation of Half-Linear Differential Equations with p-Laplacian-Like Operators

Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2584
Author(s):  
Omar Bazighifan ◽  
F. Ghanim ◽  
Jan Awrejcewicz ◽  
Khalil S. Al-Ghafri ◽  
Maryam Al-Kandari

In this paper, new oscillatory properties for fourth-order delay differential equations with p-Laplacian-like operators are established, using the Riccati transformation and comparison method. Moreover, our results are an extension and complement to previous results in the literature. We provide some examples to examine the applicability of our results.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Omar Bazighifan ◽  
Alanoud Almutairi

AbstractIn this paper, we study the oscillation of a class of fourth-order Emden–Fowler delay differential equations with neutral term. Using the Riccati transformation and comparison method, we establish several new oscillation conditions. These new conditions complement a number of results in the literature. We give examples to illustrate our main results.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2015
Author(s):  
Omar Bazighifan ◽  
Maryam Al-Kandari ◽  
Khalil S. Al-Ghafri ◽  
F. Ghanim ◽  
Sameh Askar ◽  
...  

In this work, by using the comparison method and Riccati transformation, we obtain some oscillation criteria of solutions of delay differential equations of fourth-order in canonical form. These criteria complement those results in the literature. We give two examples to illustrate the main results. Symmetry plays an essential role in determining the correct methods for solutions to differential equations.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 552 ◽  
Author(s):  
Omar Bazighifan ◽  
Mihai Postolache

The aim of this work is to study oscillatory properties of a class of fourth-order delay differential equations. New oscillation criteria are obtained by using generalized Riccati transformations. This new theorem complements and improves a number of results reported in the literature. Some examples are provided to illustrate the main results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Saeed Althubiti ◽  
Fahad Alsharari ◽  
Omar Bazighifan ◽  
George E. Chatzarakis

AbstractIn this article, we are interested in studying the asymptotic behavior of fourth-order neutral differential equations. Despite the growing interest in studying the oscillatory behavior of delay differential equations of second-order, fourth-order equations have received less attention. We get more than one criterion to check the oscillation by the generalized Riccati method and the integral average technique. Our results are an extension and complement to some results published in the literature. Examples are given to prove the significance of new theorems.


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Chengmin Hou ◽  
Sui Sun Cheng

All solutions of a fourth-order nonlinear delay differential equation are shown to converge to zero or to oscillate. Novel Riccati type techniques involving third-order linear differential equations are employed. Implications in the deflection of elastic horizontal beams are also indicated.


2021 ◽  
Vol 11 (1) ◽  
pp. 425
Author(s):  
Osama Moaaz ◽  
Ioannis Dassios ◽  
Haifa Bin Jebreen ◽  
Ali Muhib

The objective of this study was to improve existing oscillation criteria for delay differential equations (DDEs) of the fourth order by establishing new criteria for the nonexistence of so-called Kneser solutions. The new criteria are characterized by taking into account the effect of delay argument. All previous relevant results have neglected the effect of the delay argument, so our results substantially improve the well-known results reported in the literature. The effectiveness of our new criteria is illustrated via an example.


2021 ◽  
Vol 5 (4) ◽  
pp. 155
Author(s):  
Alanoud Almutairi ◽  
Omar Bazighifan ◽  
Barakah Almarri ◽  
M. A. Aiyashi ◽  
Kamsing Nonlaopon

In this paper, we study the oscillation of solutions of fourth-order neutral delay differential equations in non-canonical form. By using Riccati transformation, we establish some new oscillation conditions. We provide some examples to examine the applicability of our results.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1114
Author(s):  
Higinio Ramos ◽  
Osama Moaaz ◽  
Ali Muhib ◽  
Jan Awrejcewicz

In this work, we address an interesting problem in studying the oscillatory behavior of solutions of fourth-order neutral delay differential equations with a non-canonical operator. We obtained new criteria that improve upon previous results in the literature, concerning more than one aspect. Some examples are presented to illustrate the importance of the new results.


2021 ◽  
Vol 5 (4) ◽  
pp. 259
Author(s):  
Osama Moaaz ◽  
Clemente Cesarano ◽  
Sameh Askar

In this work, by establishing new asymptotic properties of non-oscillatory solutions of the even-order delay differential equation, we obtain new criteria for oscillation. The new criteria provide better results when determining the values of coefficients that correspond to oscillatory solutions. To explain the significance of our results, we apply them to delay differential equation of Euler-type.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 628 ◽  
Author(s):  
Clemente Cesarano ◽  
Sandra Pinelas ◽  
Faisal Al-Showaikh ◽  
Omar Bazighifan

In the paper, we study the oscillation of fourth-order delay differential equations, the present authors used a Riccati transformation and the comparison technique for the fourth order delay differential equation, and that was compared with the oscillation of the certain second order differential equation. Our results extend and improve many well-known results for oscillation of solutions to a class of fourth-order delay differential equations. Some examples are also presented to test the strength and applicability of the results obtained.


Sign in / Sign up

Export Citation Format

Share Document