scholarly journals Asymptotic Properties of Solutions of Fourth-Order Delay Differential Equations

Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 628 ◽  
Author(s):  
Clemente Cesarano ◽  
Sandra Pinelas ◽  
Faisal Al-Showaikh ◽  
Omar Bazighifan

In the paper, we study the oscillation of fourth-order delay differential equations, the present authors used a Riccati transformation and the comparison technique for the fourth order delay differential equation, and that was compared with the oscillation of the certain second order differential equation. Our results extend and improve many well-known results for oscillation of solutions to a class of fourth-order delay differential equations. Some examples are also presented to test the strength and applicability of the results obtained.

2021 ◽  
Vol 5 (4) ◽  
pp. 155
Author(s):  
Alanoud Almutairi ◽  
Omar Bazighifan ◽  
Barakah Almarri ◽  
M. A. Aiyashi ◽  
Kamsing Nonlaopon

In this paper, we study the oscillation of solutions of fourth-order neutral delay differential equations in non-canonical form. By using Riccati transformation, we establish some new oscillation conditions. We provide some examples to examine the applicability of our results.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2015
Author(s):  
Omar Bazighifan ◽  
Maryam Al-Kandari ◽  
Khalil S. Al-Ghafri ◽  
F. Ghanim ◽  
Sameh Askar ◽  
...  

In this work, by using the comparison method and Riccati transformation, we obtain some oscillation criteria of solutions of delay differential equations of fourth-order in canonical form. These criteria complement those results in the literature. We give two examples to illustrate the main results. Symmetry plays an essential role in determining the correct methods for solutions to differential equations.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Omar Bazighifan ◽  
Alanoud Almutairi

AbstractIn this paper, we study the oscillation of a class of fourth-order Emden–Fowler delay differential equations with neutral term. Using the Riccati transformation and comparison method, we establish several new oscillation conditions. These new conditions complement a number of results in the literature. We give examples to illustrate our main results.


Axioms ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 61 ◽  
Author(s):  
Clemente Cesarano ◽  
Omar Bazighifan

In this paper, the authors obtain some new sufficient conditions for the oscillation of all solutions of the fourth order delay differential equations. Some new oscillatory criteria are obtained by using the generalized Riccati transformations and comparison technique with first order delay differential equation. Our results extend and improve many well-known results for oscillation of solutions to a class of fourth-order delay differential equations. The effectiveness of the obtained criteria is illustrated via examples.


2014 ◽  
Vol 30 (3) ◽  
pp. 293-300
Author(s):  
J. DZURINA ◽  
◽  
B. BACULIKOVA ◽  

In the paper we offer oscillation criteria for even-order neutral differential equations, where z(t) = x(t) + p(t)x(τ(t)). Establishing a generalization of Philos and Staikos lemma, we introduce new comparison principles for reducing the examination of the properties of the higher order differential equation onto oscillation of the first order delay differential equations. The results obtained are easily verifiable.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1277
Author(s):  
Saeed Althubiti ◽  
Omar Bazighifan ◽  
Hammad Alotaibi ◽  
Jan Awrejcewicz

New oscillatory properties for the oscillation of solutions to a class of fourth-order delay differential equations with several deviating arguments are established, which extend and generalize related results in previous studies. Some oscillation results are established by using the Riccati technique under the case of canonical coefficients. The symmetry plays an important and fundamental role in the study of the oscillation of solutions of the equations. Examples are given to prove the significance of the new theorems.


2009 ◽  
Vol 43 (1) ◽  
pp. 71-79
Author(s):  
Jozef Džurina ◽  
Renáta Kotorová

AbstractNew criteria for asymptotic properties of the solutions of the third order delay differential equation, by transforming this equation to its binomial canonical form are presented


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 129 ◽  
Author(s):  
Ravi P. Agarwal ◽  
Omar Bazighifan ◽  
Maria Alessandra Ragusa

The objective of this paper is to study oscillation of fourth-order neutral differential equation. By using Riccati substitution and comparison technique, new oscillation conditions are obtained which insure that all solutions of the studied equation are oscillatory. Our results complement some known results for neutral differential equations. An illustrative example is included.


2021 ◽  
Vol 5 (4) ◽  
pp. 259
Author(s):  
Osama Moaaz ◽  
Clemente Cesarano ◽  
Sameh Askar

In this work, by establishing new asymptotic properties of non-oscillatory solutions of the even-order delay differential equation, we obtain new criteria for oscillation. The new criteria provide better results when determining the values of coefficients that correspond to oscillatory solutions. To explain the significance of our results, we apply them to delay differential equation of Euler-type.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2584
Author(s):  
Omar Bazighifan ◽  
F. Ghanim ◽  
Jan Awrejcewicz ◽  
Khalil S. Al-Ghafri ◽  
Maryam Al-Kandari

In this paper, new oscillatory properties for fourth-order delay differential equations with p-Laplacian-like operators are established, using the Riccati transformation and comparison method. Moreover, our results are an extension and complement to previous results in the literature. We provide some examples to examine the applicability of our results.


Sign in / Sign up

Export Citation Format

Share Document