scholarly journals Hydroethanolic Extract of Defatted Buchholzia coriacea Seeds Alleviates Tamoxifen-Induced Hepatic Triglyceride Accumulation, Inflammation and Oxidative Distress in Rat

Medicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Ayokanmi Ore ◽  
Abideen Idowu Adeogun ◽  
Oluseyi Adeboye Akinloye

Background: Tamoxifen (TMX) has proven to be effective in the prevention and treatment of breast cancer. However, long-term use of TMX is associated with hepatic steatosis, oxidative liver injury and hepatocarcinoma. Buchholzia coriacea seeds (BCS) have been widely applied in traditional medicine due to their nutritional and therapeutic potentials. This study investigates the protective effect of hydroethanolic extract of (defatted) B. coriacea seeds (HEBCS) against TMX–induced hepatotoxicity in rats. Methods: Thirty-six (36) male albino rats were divided into six groups (n = 6/group). Group I served as control. Group II received 50 mg/kg/day TMX orally (p.o.) (TMX) for 21 days, group III received TMX plus 125 mg/kg/d HEBCS p.o. (HEBCS 125) for 21 days, group IV received TMX plus 250 mg/kg/d HEBCS p.o. (HEBCS 250) for 21 days and rats in group V and VI received HEBCS 125 and HEBCS 250 respectively for 21 days. Results: Compared with the control, TMX caused a significant increase (p < 0.05) in serum hepatic function biomarkers: alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase by 57%, 60% and 68% respectively. TMX also caused a significant increase in hepatic triglycerides level by 166% when compared with control and a significant decrease in serum HDL-cholesterol level by 37%. Compared with control, hepatic marker of inflammation, tumour necrosis factor alpha (TNF-α) increased significantly by 220%, coupled with significant increase in expression of interleukin 6 and cyclooxygenase 2. There was also significant increase in levels of Biomarkers of oxidative stress, nitric oxide, malondialdehyde and protein carbonyls in the TMX group by 89%, 175% and 114% respectively when compared with the control. Hepatic antioxidants, reduced glutathione (GSH) level and activities of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) and glutathione peroxidase (GSH-Px) decreased significantly in the TMX group by 35%, 67%, 41%, 59% and 53% respectively when compared with the control. However, HEBCS at 250 mg/kg significantly protected against TMX–induced hepatotoxicity by decreasing hepatic triglyceride content, serum hepatic function biomarkers, hepatic inflammation and oxidative stress with significant improvement in hepatic antioxidant system. Histopathological findings show that HEBCS alleviate TMX–induced hepatocyte ballooning. Conclusions: Current data suggest that HEBCS protected against TMX–induced hepatotoxicity in rats. HEBCS may be useful in managing TMX–induced toxicities in breast cancer patients. It may also be helpful against other forms of liver injury involving steatosis, inflammation, free radicals, and oxidative damage.

2004 ◽  
Vol 23 (3) ◽  
pp. 137-143 ◽  
Author(s):  
Kanwaljit Chopra ◽  
Devinder Singh ◽  
Vikas Chander

Intraperitoneal injection of ferric nitrilotriacetate (Fe-NTA) to rats and mice results in iron-induced free radical injury and cancer in kidneys. This study was designed to investigate the effect of catechin, a bioflavonoid with antioxidant potential, on Fe-NTA-induced nephrotoxicity in rats. Four groups were employed in the present study. Group I served as control group, Group II animals received Fe-NTA (8 mg iron/kg body weight i.p.), Group III animals were given 40 mg/kg catechin p.o. twice a day for 4 days and on the 5th day Fe-NTA was challenged, and Group IV animals received catechin alone for 4 days. Renal function was assessed by measuring plasma creatinine and blood urea nitrogen. The oxidative stress was measured by renal malondialdehyde levels, reduced glutathione levels and by enzymatic activity of catalase, glutathione reductase and superoxide dismutase. One hour after a single intraperitoneal (i.p.) injection of Fe-NTA (8 mg iron/kg), a marked deterioration of renal architecture, renal function and severe oxidative stress was observed. Pretreatment of animals with catechin markedly attenuated renal dysfunction, reduced elevated thiobarbituric acid reacting substances (TBARS), restored the depleted renal antioxidant enzymes and normalized the renal morphological alterations. These results clearly demonstrate the role of oxidative stress and its relation to renal dysfunction, and suggest a protective effect of catechin on Fe-NTA-induced nephrotoxicity in rats.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Suchittra Samuhasaneeto ◽  
Duangporn Thong-Ngam ◽  
Onanong Kulaputana ◽  
Doungsamon Suyasunanont ◽  
Naruemon Klaikeaw

To study the mechanism of curcumin-attenuated inflammation and liver pathology in early stage of alcoholic liver disease, female Sprague-Dawley rats were divided into four groups and treated with ethanol or curcumin via an intragastric tube for 4 weeks. A control group treated with distilled water, and an ethanol group was treated with ethanol (7.5 g/kg bw). Treatment groups were fed with ethanol supplemented with curcumin (400 or 1 200 mg/kg bw). The liver histopathology in ethanol group revealed mild-to-moderate steatosis and mild necroinflammation. Hepatic MDA, hepatocyte apoptosis, and NF-κB activation increased significantly in ethanol-treated group when compared with control. Curcumin treatments resulted in improving of liver pathology, decreasing the elevation of hepatic MDA, and inhibition of NF-κB activation. The 400 mg/kg bw of curcumin treatment revealed only a trend of decreased hepatocyte apoptosis. However, the results of SOD activity, PPARγprotein expression showed no difference among the groups. In conclusion, curcumin improved liver histopathology in early stage of ethanol-induced liver injury by reduction of oxidative stress and inhibition of NF-κB activation.


2015 ◽  
Vol 7 (4) ◽  
pp. 400-404
Author(s):  
Ravi KILLI ◽  
Bharavi KAITHEPALLI ◽  
Ravi Kumar PENTELA ◽  
Eswar Rao BANDI ◽  
Vamsi Krishna BOBBA ◽  
...  

This 6 week study was conducted to evaluate the antioxidant potential, maintaining quality and sensory properties of broiler meat from birds fed on dietary neem leaf powder (NLP). A total of 90 Vencobb broiler chicks were randomly allotted to 6 groups of 15 birds in each. Dietary treatments consisted of normal diet (control Group I), feed containing terramycin-200 (TM-200*) at the concentration of 0.05% (Group II), feed containing NLP of 0.2% (Group III), feed containing NLP of 0.2% and spirulina of 1% (Group IV), feed containing TM-200 at 0.05% and spirulina of 1% (Group V) and feed containing spirulina of 1% (Group VI). At the end of the experiment liver, kidney and muscle samples were collected to evaluate the tissue peroxidation (TBARS and protein carbonyls) and antioxidant markers (SOD). Physico-chemical quality determinants of both fresh and preserved meat viz. extract release volume (ERV), water holding capacity (WHC) and pH were also studied. TBARS protein carbonyls indicated a significant (P < 0.05) decrease in all the treated groups when compared to control. Superoxide dismutase levels were found to be significantly increased in all the treated groups, in all the tissues collected. Compared to control group, favorable physico-chemical quality determinants were recorded in all the treated groups. The sensory attributes did not show significant (P < 0.05) differences for color, flavor, juiciness, tenderness and overall acceptability. This study indicates enhanced stress tolerance levels, improved meat quality with unaffected consumer acceptance levels of the meat observed in the study, from broilers fed with neem and spirulina either alone or in combinationsș this points out that neem at 0.2% level can be used in poultry diets instead of antibiotic growth promoters (AGP).


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Dahan Yang ◽  
Chenhui Zhao ◽  
Meixi Zhang ◽  
Shujun Zhang ◽  
Jie Zhai ◽  
...  

Abstract Background Reticuloendotheliosis virus (REV) is a retrovirus that causes severe immunosuppression in poultry. Animals grow slowly under conditions of oxidative stress. In addition, long-term oxidative stress can impair immune function, as well as accelerate aging and death. This study aimed to elucidate the pathogenesis of REV from the perspective of changes in oxidative-antioxidative function following REV infection. Methods A total of 80 one-day-old specific pathogen free (SPF) chickens were randomly divided into a control group (Group C) and an REV-infected group (Group I). The chickens in Group I received intraperitoneal injections of REV with 104.62/0.1 mL TCID50. Thymus was collected on day 1, 3, 7, 14, 21, 28, 35, and 49 for histopathology and assessed the status of oxidative stress. Results In chickens infected with REV, the levels of H2O2 and MDA in the thymus increased, the levels of TAC, SOD, CAT, and GPx1 decreased, and there was a reduction in CAT and Gpx1 mRNA expression compared with the control group. The thymus index was also significantly reduced. Morphological analysis showed that REV infection caused an increase in the thymic reticular endothelial cells, inflammatory cell infiltration, mitochondrial swelling, and nuclear damage. Conclusions These results indicate that an increase in oxidative stress enhanced lipid peroxidation, markedly decreased antioxidant function, caused thymus atrophy, and immunosuppression in REV-infected chickens.


2021 ◽  
Vol 31 (3) ◽  
pp. 156
Author(s):  
Joko Wahyu Wibowo ◽  
Minidian Fasitasari ◽  
Siti Thomas Zulaikhah

<p>Oxidative stress is related to pregnancy complications that could increase maternal and infant mortality. This study aimed to determine the effect of propolis extract supplementation during pregnancy on oxidative stress level and pregnancy outcomes utilizing Malonedealdehyde (MDA) and 8-Oxo-2′-Deoxogunosine (8-OHdG) levels, maternal body weight, and the average number of fetuses as the parameters. The study was conducted by using a posttest only control group design on 24 pregnant Wistar rats, which were divided into four groups. Group I was control, Group II-IV were the treatment groups given propolis extract of 1.8mg, 3.6mg, and 7.2mg/200gBW/day, respectively. The standard feed given was AIN93G dose of 20g/day and distilled water ad libitum. Propolis extract was given using a gastric feeding tube every morning for 20 days. At the end of the treatment, body weight was meisured and blood collected for assessed MDA and 8-OHdG levels  by ELISA method  and then we performed abdominal surgery to count number of fetuses. The result are there were decreasing level of MDA and 8-OHDG by administration of propolis significantly (p&lt;0.05) group: I: 2,04±0,091, II: 1,55±0,067, III: 1,05±0,176, IV: 0,73±0,075 (mmol/mL) (p=0.001); 8 OHdG level (ng/mL) group I: 10,02±0,403, II: 8,60±0,078, III: 7,89±0,051, IV: 7,53±0,063 (p=0,001). Average of maternal body weight (g) were increased: group I: 228,33±3,93, II: 237,17±4,36, III: 244,83±4,02, IV: 248,00±5,76 (p=0,001) and Average number of fetuses tend to increased as well, group I : 8,5±0,05, II: 7,8±0,41, III: 9,5±1,05, IV: 9,6±0,52 (p=0,02). The conclusion of this research are supplementation of propolis extract in pregnant rats can reduce oxidative stress and improve pregnancy outcomes.</p>


Biomedicine ◽  
2020 ◽  
Vol 39 (2) ◽  
pp. 333-338
Author(s):  
Kalaivani Manokaran ◽  
Vasanthalaxmi Krishnananda Rao ◽  
Nilima . ◽  
Manjula Shimoga Durgoji Rao ◽  
Sucheta Prasanna Kumar

Introduction and Aim: Oxidative stress plays a very important role in endosulfan-induced toxic effects on reproductive organs. Vitamin C is a potent antioxidant which plays an important role in decreasing oxidative stress. The present study was aimed to investigate the protective role of vitamin C against endosulfan-induced testicular toxicity in Wistar rats. To investigate a protective effect of vitamin C against endosulfan induced toxicity on biochemical changes. Materials and Methods: Seventy male neonatal Wistar rats were divided into  seven groups. The group  I was taken as the control group, the endosulfan-treated were grouped into II (3 mg/kg body weight (BW) and group III (6 mg/kg BW), Group IV (9 mg/kg BW) and Group V (12 mg/kg BW). Group VI (9 mg/kg BW) and group VII (12 mg/kg BW) were pretreated with vitamin C (20 mg/kg BW) for 60 days. After  the experimental procedures, the testicular weight, lactate dehydrogenase (LDH) enzyme and testosterone in plasma, LDH, steroidogenic enzymes 3?-HSD and 17?-HSD in testis were evaluated. One-way ANOVA was used to determine the statistical significance. Results: Significant improvement in the testicular weight (P<0.05) , LDH (P<0.05) levels both in plasma and testis, increase in testosterone(P<0.001) and steroidogenic enzyme levels(P<0.001) was observed in the group pretreated with vitamin C treated group when compared to the endosulfan treated group. Conclusion: Vitamin C decreases the toxic effect of endosulfan on testis. The present action might be  due to its antioxidative properties.


2010 ◽  
Vol 104 (11) ◽  
pp. 1655-1661 ◽  
Author(s):  
Ai Guo Ma ◽  
Evert G. Schouten ◽  
Yong Ye Sun ◽  
Fang Yang ◽  
Xiu Xia Han ◽  
...  

Pregnancy is a condition exhibiting increased susceptibility to oxidative stress, and Fe plays a central role in generating harmful oxygen species. The objective of the present study is to investigate the changes in haematological status, oxidative stress and erythrocyte membrane fluidity in anaemic pregnant women after Fe supplementation with and without combined vitamins. The study was a 2 months double-blind, randomised trial. Pregnant women (n 164) were allocated to four groups: group C was the placebo control group; group I was supplemented daily with 60 mg Fe (ferrous sulphate) daily; group IF was supplemented daily with Fe plus 400 μg folic acid; group IM was supplemented daily with Fe plus 2 mg retinol and 1 mg riboflavin, respectively. After the 2-month trial, Hb significantly increased by 15·8, 17·3 and 21·8 g/l, and ferritin by 2·8, 3·6 and 11·0 μg/l, in the I, IF and IM groups compared with placebo. Polarisation (ρ) and microviscosity (η) decreased significantly in other groups compared with placebo, indicating an increase in membrane fluidity. Significant decreases of ρ and η values compared with group C were 0·033 and 0·959 for group I, 0·037 and 1·074 for group IF and 0·064 and 1·865 for group IM, respectively. In addition, significant increases of glutathione peroxidase activities and decreases of malondialdehyde were shown in all treated groups, as well as increases of plasma retinol and urine riboflavin in group IM. The findings show that supplementation with Fe and particularly in combination with vitamins could improve the haematological status as well as oxidative stress and erythrocyte membrane fluidity.


2018 ◽  
Vol 23 ◽  
pp. 2515690X1879605 ◽  
Author(s):  
Nourollah Rezaei ◽  
Tahereh Mardanshahi ◽  
Majid Malekzadeh Shafaroudi ◽  
Saeed Abedian ◽  
Hamid Mohammadi ◽  
...  

The present study was designed to investigate the antioxidant property of l-carnitine (LC) on serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (TH) and testis oxidative stress in streptozotocin (STZ)-induced diabetic rats. The rats were divided into the following groups: group I, control; group II, LC 100 mg/kg/d; group III, diabetic; and groups IV to VI, diabetic rats treated with 50, 100, and 200 mg/kg/d of LC, respectively. Daily injections were given intraperitoneally for 7 weeks. At the end of experimental period, after sacrificing the rats, FSH, LH, TH, total antioxidant capacity (TAC), malondialdehyde (MDA), glutathione (GSH), catalase (CAT), mitochondrial function (MTT), protein carbonyl (PC), and reactive oxygen species (ROS) levels were measured. STZ caused an elevation of MDA, ROS, and PC ( P < .001) with reduction of GSH, CAT, TAC, and MTT ( P < .001) in the serum levels. Group VI had significantly increased FSH, LH, and TH levels versus the untreated diabetic group ( P < .001). Although groups V and VI significantly decreased MDA ( P < .001), PC ( P < .01), and ROS ( P < .01) compared with the untreated diabetic group; only in group VI, the activity of GSH ( P < .001), CAT ( P < .01), TAC ( P < .001), and MTT ( P < .001) significantly increased. The results of the present study suggest that LC decreased diabetes-induced oxidative stress complications and also improved serum level of FSH, LH, and TH by reducing levels of lipid peroxidation and increasing antioxidant enzymes.


2021 ◽  
Vol 9 (2) ◽  
pp. 450-464
Author(s):  
Renu Tripathi ◽  
Swati Agarwal ◽  
Syed Ibrahim Rizvi ◽  
Neetu * Mishra

Mercury is a harmful toxic pollutant, which has hepato-nephrotoxic, hematotoxic, genotoxic and neurotoxic, effects. The aim of the study was to evaluate the protective efficacy of wheatgrass on mercuric chloride (HgCl2) induced oxidative stress and associated complications in rat model. Albino rats were divided into four groups (three rats per group). Group I normal control group. Group II oxidative stressed group received mercuric chloride (0.5 mg/kg/day). Group III only received wheatgrass extract (100 mg/kg/day), whereas Group IV received wheatgrass (100 mg/kg/day) after one hour, followed by mercuric chloride (0.5 mg/kg/day) for 30 days. The results of the study showed that wheatgrass supplementation significantly decreased the HgCl2 induced elevated oxidative stress parameters Plasma Malondialdehyde (MDA) content, Plasma membrane redox system (PMRS), Advanced oxidation protein products (AOPP), simultaneously elevated lipid profile (Total Cholesterol, Triglycerides, Low-density lipoprotein (LDL), liver enzymes as, Plasma Alkaline phosphatase (ALP), Aspartate aminotransferase (AST), and Alanine aminotransferase (ALT), Serum Urea, and Creatinine levels in rats. In addition, wheatgrass treatment improved the antioxidant status in terms of intracellular Reduced Glutathione (GSH), Ferric reducing antioxidant power (FRAP) and 2, 2- diphenyl -1- picrylhydrazyl (DPPH). Therefore it can be concluded that wheatgrass has great potential to diminish the stress-mediated complications and improve the antioxidant status.


2021 ◽  
Vol 32 (2) ◽  
pp. 79-84
Author(s):  
Kevin Owen ◽  
Siti Syarifah ◽  
Mutiara Indah Sari

Background: Oxidative stress induced cancer cell formation. Gene polymorphism plays roles in carcinogen metabolism, antioxidant and DNA repairing pathway was susceptibility to oxidative stress. This study aim to determine the association between CAT-21 A/T polymorphism with breast cancer susceptibility. Methods: Case control study was conducted on 65 breast cancer patient and 65 healthy control group. The whole blood samples were isolated from 65 breast cancer patients in Haji Adam Malik General Hospital Medan and 65 healthy control group. The CAT-21A/T polymorphism was analyzed by PCR-RFLP procedure. PCR-RFLP product was electrophoresed and visualized in agarose 4%. Results:The AA CAT-21 genotype were lower in breast cancer (BC) than healthy control (HC) group (31/47.7% vs 40/61.5%), in the contrary AT+TT genotype was greater in BC than HC group (34/52.3% vs 25/38.5%) with (p=0.159, OR=1.755, CI=0.874–3.525). A allele CAT-21 were found lower in BC than HC group (89/68.5% vs 105/80.8%) then T allele were greater in BC than HC group (41/31.5% vs 25/19.2%) with (p=0.033, OR=1.935;CI=1.022-3.428). Conclusions: There was significant difference in allele distribution of CAT-21 A/T between case and control group but no in genotype distribution. In this population study showed that allele of CAT -21 A/T polymorphism could represent as a risk factor to breast cancer. Bangladesh J Medicine July 2021; 32(2) : 79-84


Sign in / Sign up

Export Citation Format

Share Document