scholarly journals Dry Sliding Behavior of Qbe−2 Beryllium Bronze against 38CrMoAlA Steel in Pneumatic Downhole Motor under Different Loads

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 459
Author(s):  
Chenfan Liang ◽  
Yu Wang ◽  
Kai Zhang ◽  
Zhijian Peng

In drilling engineering, the wear of tribo−pairs is the primary cause for the rapid failure of rotating seals in pneumatic downhole tools. In order to reduce the wear of tribo−pairs, a new type of rotating seals was designed in this work, which introduced copper alloys between the stator and rotor. To elucidate the wear and failure mechanism of the copper−steel tribo−pair rotating seals in pneumatic downhole motors, pin−on−disc dry sliding tests with Qbe−2 beryllium bronze pin against 38CrMoAlA steel disc under different loads were thus designed to simulate the friction and wear behavior of such tribo−pair. During the dry sliding process, the friction behavior of the copper pin would go through a running−in period and then become stable. As the load increases, the running−in period will be shortened, while the friction coefficient during the stable period decreases. Interestingly, a false stability occurs when the load is low. However, this phenomenon will disappear under heavy loads. The wear mechanism of the copper pins would change from adhesive wear to ploughing wear as the load increases, which is mainly related to the spalling of asperities and the filling of wear debris into the steel disc. The wear debris consists of copper and copper oxide. The surface roughness of the steel disc and copper pin decreased and the size of the wear debris increased with the increase of the load. The material removal mainly occurs on the copper pin, which will present a relatively small value under 45 N. On contrast, due to the filling of wear debris, the volume of the steel disc increased. Therefore, considering the value and stability of friction coefficients, as well as the wear amount of the sample, it would be better that such tribo−pair could work under 45 N. The present work will provide a fundamental understanding and solid support for systematically designing the tribo−pairs in pneumatic downhole tools under practical working conditions.

2010 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Muna K. Abbass

 The aim of the present research is to study the effect of cadmium addition on microstructure and wear behavior of the alloy (Al-12%Si) under dry sliding conditions. Wear behavior was studied by using the Pin-On- Disc technique under different conditions at applied loads 5-20 N, at constant sliding speed and in constant time. The steel disc hardness was 35HRc. All alloys were prepared with different percentages of cadmium (1.0, 2.0, 3.0) wt%. Also the base alloy was prepared by melting and pouring the molten metal in a metallic mold. It was found that the cadmium addition to Al-Si matrix decreases the wear rate and improves the wear properties for alloys containing -Cd under loads above 10N. It was also found that the alloy Al-12%Si containing 3%Cd is the best alloy in wear resistance and friction coefficient. This is due to presence of the Cd-phase as cuboids or hard particles distributed in a eutectic matrix which reduces the friction coefficient at high loads (20N). 


2013 ◽  
Vol 20 (1) ◽  
pp. 7-14 ◽  
Author(s):  
Mehrdad Soltani ◽  
Seid Abbas Hoseininejad

AbstractThis composite has been developed by solidification processing by the addition of 0.5–3. 5 wt% powders of oxide TiO2 to molten Al-Cu alloy. The dry sliding wear behavior of pins of cast composite, fabricated by the solidification of the melt-particle slurry in mold, has been determined by pin-on-disc wear tests carried out conventionally and while removing wear debris by camel brush. The accumulated volume loss in composites increases linearly with increasing the sliding distance, and the wear rate increases more or less linearly with increasing load. The increasing particle content decreases the wear rate at a given load. The accumulated volume loss is considerably higher when the wear debris is removed by a camel brush during dry sliding wear. The relatively brighter compacted oxide transfer layer could be observed in the SEM micrograph of worn pin surfaces of the composites developed by the addition of TiO2. At higher loads, the oxide debris are expected to get better compacted to form the transfer layer, spread over a larger area of the sliding surface, and thus, their removal causes a larger wear compared to that without the removal of wear debris.


Author(s):  
Sajeeb Rahiman ◽  
Robinson Smart

Dry sliding wear and immersion corrosion behaviors of Al 5083-based hybrid composite reinforced with multiwalled carbon nanotube (MWCNT), Molybdenum boride (MoB) and nickel (Ni) are studied with different weight percentages. The reinforcement weight percentages of MWCNT ranges from 0 to 1.5, that of MoB from 1 to 4 and for Ni from 2 to 8. Dry sliding wear behavior at room temperature is studied using Pin on Disc by varying the sliding distances from 500 to 2000m, load from 10 to 40 N and sliding velocity from 0.25 to 1.75m/s. The wear studies revealed that there is a considerable decrease in wear rate for composites than the alloy material with increase in %wt of reinforcements for all test parameters. The worn surface analysis revealed that there are two types of wear mechanisms namely abrasive and adhesive. The uniform immersion corrosion tests also showed decreasing rate with increase in reinforcements.


Author(s):  
Andrzej Dzierwa ◽  
Pawel Pawlus ◽  
Rafal Reizer

The pin-on-disc dry sliding friction and wear experiments have been made on 42CrMo4 steel in contact with Si3N4, SiC, WC, Al2O3, and ZrO2 ceramic balls. The tests were carried out at sliding speeds of 0.16 m/s, 0.24 m/s, and 0.32 m/s. During the tests, the friction force was monitored as a function of time. Discs and balls wear was measured after the tests using a white light interferometer Talysurf CCI Lite and Altisurf 520 optical profilometer with a CL1 confocal probe. To decrease variations in the experimental results, during the tests, wear debris was continuously removed from the disc surfaces. It was found out that with Al2O3 counterpart the wear volume of the steel discs was the largest. However, the largest wear volume of the balls was observed for Si3N4 ceramic balls.


2015 ◽  
Vol 1125 ◽  
pp. 116-120
Author(s):  
Hamidreza Ghandvar ◽  
Saeed Farahany ◽  
Mohd Hasbullah Idris ◽  
Mohammadreza Daroonparvar

Dry sliding wear and friction behavior of cast A356 Al-Si alloy and composite containing 5wt. % ZrO2 particles were studied by means of a pins-on-disk apparatus over loads of 5N, 20N and a sliding speed of 0.628m/s. The experimental results showed that the composites exhibited a higher wear resistance in comparison to that of the unreinforced A356 alloy. The friction coefficient of tested materials increased with increasing applied load from 5 to 20 N. FESEM investigations revealed that the wear mechanism of the A356 matrix alloy changed from sever abrasive, adhesive wear into mild abrasion and adhesive wear with addition of 5wt. % ZrO2 reinforcement particles.


2016 ◽  
Vol 852 ◽  
pp. 391-396 ◽  
Author(s):  
Pervaz Ahmed Mouda ◽  
Abdul Azeez ◽  
Siddhi Jailani Hydershah

In this study, the effect of Shallow Cryogenic Treatment (SCT) on the wear behavior of copper beryllium alloy was investigated. The material is subjected to shallow cryogenic treatment to – 80 °C and wear study was conducted on a pin on disc apparatus. The Shallow Cryogenic treated and untreated copper beryllium alloy pins were used against hardened AISI 4140 steel disc. The micro-structural examination was carried out using optical microscope. The hardness was measured using Rockwell hardness tester. The wear track was studied using optical microscope. Microstructure study indicated that the grains of shallow cryogenic treated samples are finer than that of untreated sample. Hardness of the cryogenic treated sample is higher than that of the untreated sample. The wear resistance of cryogenic treated copper beryllium alloy has improved compared with untreated sample.


2016 ◽  
Vol 674 ◽  
pp. 265-270 ◽  
Author(s):  
Andrzej Dzierwa

Tribological tests were conducted using a pin-on-disc tester. In the experiment, a steel disc of hardness 40 HRC was put in contact with a steel ball of hardness 62 HRC. Disc samples were prepared in order to obtain very similar values of the Sa parameter, smaller than 0.5 μm. Different methods of preparing smooth surfaces were used. Dry tests using similar contact conditions were carried out. During tests, the friction force was monitored as a function of time. Wear of discs and balls was measured after the test using white light interferometer. In order to decrease variation of the experimental results, during tests the wear debris was continuously removed from the disc surface. It was shown that type of treatment play a role on tribological behavior of sliding pairs.


Author(s):  
Xu-Dong Peng ◽  
Ji-Yun Li ◽  
Qun-Feng Zeng

The friction and wear behavior of polyetheretherketone (PEEK) composites was investigated, which are reinforced with nanometer Al2O3 or nanometer TiO2 and blended with polytetrafluoroethylene (PTFE) in a fixed weight fraction of 10% and are prepared by heat compression moulding. The studies emphasized particularly on the nanometer Al2O3 filled PEEK composites. The tests were performed on a pin-on-disc test apparatus with a PEEK composite pin sliding against AISI 1020 carbon steel disc under dry friction conditions and were all carried out at room temperature. The worn surfaces of the PEEK composites were examined by scanning electron microscopy (SEM). Results indicated that the above PEEK composites exhibited lower friction coefficient and wear rate in comparison with the mixture of PEEK with PTFE. The SEM micrographs of the worn surfaces indicated that the scratched and ploughed marks appeared on the wear scar of PEEK filled with PTFE, while the scuffing on the worn surfaces of nanometer Al2O3/PTFE/PEEK was obviously abated. The optimal content of nanometer Al2O3 in the filled PEEK composite should be recommended as 6.5 wt %. The friction behavior of the nanometer TiO2/PTFE/PEEK composites was far better than that of the nanometer Al2O3/PTFE/PEEK composites under the same test conditions and with the same content of nanometer compounds, which was perhaps due to much more strong synergistic effect between nanometer TiO2 and PTFE than that between nanometer Al2O3 and PTFE.


1998 ◽  
Vol 553 ◽  
Author(s):  
D. J. Sordelet ◽  
J. S. Kim ◽  
M. F. Besser

AbstractDry sliding friction and wear experiments were performed with pin-on-disc techniques using WC and brass pins in contact with quasicrystalline (Al65Cu23Fe12) and crystalline (Al50Cu35Fe15and Al70Cu20Fe10) discs, which were prepared by powder metallurgy routes. The contact loads (1, 5 and 10 N) used in this study produced similar coefficients of friction 0.3-0.4 for the Al65Cu23Fe12and Al50Cu35Fe15phases. These values are higher than previously reported for quasicrystalline and related crystalline phases. Possible reasons for these differences are presented. The contrasting wear behavior between different pins and discs is discussed in terms of contact area, oxidation, material transfer mechanisms and fracture characteristics.


2011 ◽  
Vol 287-290 ◽  
pp. 998-1002 ◽  
Author(s):  
A. Baradeswaran ◽  
A. Elayaperumal

This work investigates Al 6061 alloy with graphite particle impregnated metal matrix composites under dry sliding conditions. The conventional casting techniques were used for preparing the composite material. Experiments were conducted under dry sliding conditions for determining the wear behavior of Al 6061 alloy- Graphite composite material with varying wt % graphite content under different sliding speeds and at different loads. Sliding distance of 250m was commonly used for the wear test. A pin on disc machine was used for conducting the wear test. The test was conducted under atmospheric conditions. Wear rate decreases with increased sliding speed and increases with increasing load. Worn surfaces of the composites were examined through scanning electron microscope. The wear loss of the composite material with 5Wt % graphite was found to be minimum with respect to sliding speeds and loads.


Sign in / Sign up

Export Citation Format

Share Document