scholarly journals Route to Cost-Effective Fabrication of Wafer-Scale Nanostructure through Self-Priming Nanoimprint

Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 121
Author(s):  
Yue Su ◽  
Zhaoxin Geng ◽  
Weihao Fang ◽  
Xiaoqing Lv ◽  
Shicai Wang ◽  
...  

Nanoimprint technology is powerful for fabricating nanostructures in a large area. However, expensive equipment, high cost, and complex process conditions hinder the application of nano-imprinting technology. Therefore, double-layer self-priming nanoimprint technology was proposed to fabricate ordered metal nanostructures uniformly on 4-inch soft and hard substrates without the aid of expensive instruments. Different nanostructure (gratings, nanoholes and nanoparticles) and different materials (metal and MoS2) were patterned, which shows wide application of double-layer self-priming nanoimprint technology. Moreover, by a double-layer system, the width and the height of metal can be adjusted through the photoresist thickness and developing condition, which provide a programmable way to fabricate different nanostructures using a single mold. The double-layer self-priming nanoimprint method can be applied in poor condition without equipment and be programmable in nanostructure parameters using a single mold, which reduces the cost of instruments and molds.

Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 465 ◽  
Author(s):  
Yuhao Ding ◽  
Qi Liu ◽  
Ping Lao

Low-level warm clouds are a major component in multilayered cloud systems and they are generally hidden from the top-down view of satellites with passive measurements. This study conducts an investigation on oceanic warm clouds embedded in multilayered structures by using spaceborne radar data with fine vertical resolution. The occurrences of warm cloud overlapping and the geometric features of several kinds of warm cloud layers are examined. It is found that there are three main types of cloud systems that involve warm cloud layers, including warm single layer clouds, cold-warm double layer clouds, and warm-warm double layer clouds. The two types of double layer clouds account for 23% and in the double layer occurrences warm-warm double layer subsets contribute about 13%. The global distribution patterns of these three types differ from each other. Single-layer warm clouds and the lower warm clouds in the cold-warm double layer system they have nearly identical geometric parameters, while the upper and lower layer warm clouds in the warm-warm double layer system are distinct from the previous two forms of warm cloud layers. In contrast to the independence of the two cloud layers in cold-warm double layer system, the two kinds of warm cloud layers in the warm-warm double layer system may be coupled. The distance between the two layers in the warm-warm double layer system is weakly dependent on cloud thickness. Given the upper and lower cloud layer with moderate thickness of around 1 km, the cloudless gap reaches its maximum when exceeding 600 m. The cloudless gap decreases in thickness as the two cloud layers become even thinner or thicker.


Coatings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 420 ◽  
Author(s):  
Bae ◽  
Yu ◽  
Jung ◽  
Lee ◽  
Choi

Large-area and uniform plasmonic nanostructures have often been fabricated by simply evaporating noble metals such as gold and silver on a variety of nanotemplates such as nanopores, nanotubes, and nanorods. However, some highly uniform nanotemplates are limited to be utilized by long, complex, and expensive fabrication. Here, we introduce a cost-effective and high-throughput fabrication method for plasmonic interference coupled nanostructures based on quasi-uniform anodic aluminum oxide (QU-AAO) nanotemplates. Industrial aluminum, with a purity of 99.5%, and copper were used as a base template and a plasmonic material, respectively. The combination of these modifications saves more than 18 h of fabrication time and reduces the cost of fabrication 30-fold. From optical reflectance data, we found that QU-AAO based plasmonic nanostructures exhibit similar optical behaviors to highly ordered (HO) AAO-based nanostructures. By adjusting the thickness of the AAO layer and its pore size, we could easily control the optical properties of the nanostructures. Thus, we expect that QU-AAO might be effectively utilized for commercial plasmonic applications.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Orlando Salas ◽  
Oladis Troconis de Rincón ◽  
Daniela Rojas ◽  
Adriana Tosaya ◽  
Nathalie Romero ◽  
...  

The main objective of this research was to evaluate the performance of thermal-sprayed coating of Zn/Al (double layer) after six years of exposure, with and without the use of sealant (wash primer) in tropical marine environments of very high aggressiveness: La Voz Station (located at the Peninsula de Paraguaná/Falcón State) and Lake Maracaibo Crossing Station (located at Zulia State), in Venezuela. To that effect, carbon steel coupons (100 mm × 150 mm × 2 mm) were sprayed by flame process. The coupons were characterized by means of initial weight, thickness, metallographic, adherence, and roughness, being evaluated monthly by visual inspection during six years. After removal, the coupons were evaluated by microscopic analysis to determine the morphology of attack, microstructure, penetration of contaminants, composition, and morphology of corrosion products. The results showed that after six years, the double-layer system represents an excellent choice for corrosion protection of steel by combining the galvanic protection of zinc with the erosion resistance of aluminum. However, due to the erosion-corrosion effect, a sealant such as wash primer can be used in order to extend its service life.


1994 ◽  
Vol 18 (1-3) ◽  
pp. 303-307 ◽  
Author(s):  
Gerald Gerlach ◽  
Karsten Sager ◽  
Andreas Schroth

2020 ◽  
Author(s):  
Qi Liu ◽  
Yuhao Ding ◽  
Ping Lao

<p>Low-level warm clouds are a major component in multilayered cloud systems and are generally hidden from the top-down view of satellites with passive measurements. By using spaceborne radar data with fine vertical resolution, this study conducts an investigation on oceanic warm clouds embedded in multilayered structures. The occurrences of warm cloud overlapping and the geometric features of several kinds of warm cloud layers are examined. It is found that there are three main types of cloud systems that involve warm cloud layers, including warm single layer clouds, cold-warm double layer clouds and warm-warm double layer clouds. The two types of double layer clouds account for 23% and in the double layer occurrences warm-warm double layer subsets contribute about 13%. The global distribution patterns of these three types differ from each other. Single-layer warm clouds and the lower warm clouds in the cold-warm double layer system have nearly identical geometric parameters, while the upper and lower layer warm clouds in the warm-warm double layer system are distinct from the previous two forms of warm cloud layers. In contrast to the independence of the two cloud layers in cold-warm double layer system, the two kinds of warm cloud layers in the warm-warm double layer system may be coupled. The distance between the two layers in the warm-warm double layer system is weakly dependent on cloud thickness. Given the upper and lower cloud layer with moderate thickness around 1 km, the cloudless gap reaches its maximum exceeding 600 m. As the two cloud layers become even thinner or thicker, the cloudless gap decreases in thickness. It is believed that such knowledge on cloud overlapping is critical for fully understanding the distribution of warm clouds in three-dimensional space. The results derived in this study could help validating cloud results of numerical models, which are indeed three-dimensional in nature. They could also be used to improve the estimation of cloud radiative forcing, since it is affected by cloud occurrences and especially their vertical structures. It should be pointed out that solid explanations for the above cloud features cannot be presented by only using these satellite data themselves. </p>


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Victor Ovchinnikov ◽  
Andriy Shevchenko

A cost-effective fabrication of random noble-metal nanostructures with a feature size of the order of 10 nm on a large-area dielectric substrate is described. The method combines dry etching of the substrate through a self-organized metal mask with a directional deposition of a multilayered metal film. The technique allows one to create metal nanoislands on a nanopatterned dielectric template with an enhanced adhesion between the metal and the dielectric. The use of the adhesion layer—that makes the structures stable—is important in view of variety of optical and other potential applications of the structures. We observe that the presence of the adhesion sublayer dramatically influences both the morphological and optical properties of the structures. The results of this work can be of interest in regard to the development of new approaches to self-organization-based nanofabrication of extremely small metal and metal-dielectric nanostructures on large-area substrates.


2020 ◽  
Vol 8 (16) ◽  
pp. 3631-3639 ◽  
Author(s):  
Miriam Marquitan ◽  
Melanie D. Mark ◽  
Andrzej Ernst ◽  
Anna Muhs ◽  
Stefan Herlitze ◽  
...  

Carbon nanoelectrodes in the sub-micron range were modified with an enzyme cascade immobilized in a spatially separated polymer double layer system for the detection of glutamate at the cellular level.


Sign in / Sign up

Export Citation Format

Share Document