scholarly journals Biomimetic Deposition of Hydroxyapatite Layer on Titanium Alloys

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1447
Author(s):  
Madalina Simona Baltatu ◽  
Andrei Victor Sandu ◽  
Marcin Nabialek ◽  
Petrica Vizureanu ◽  
Gabriela Ciobanu

Over the last decade, researchers have been concerned with improving metallic biomaterials with proper and suitable properties for the human body. Ti-based alloys are widely used in the medical field for their good mechanical properties, corrosion resistance and biocompatibility. The TiMoZrTa system (TMZT) evidenced adequate mechanical properties, was closer to the human bone, and had a good biocompatibility. In order to highlight the osseointegration of the implants, a layer of hydroxyapatite (HA) was deposited using a biomimetic method, which simulates the natural growth of the bone. The coatings were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), micro indentation tests and contact angle. The data obtained show that the layer deposited on TiMoZrTa (TMZT) support is hydroxyapatite. Modifying the surface of titanium alloys represents a viable solution for increasing the osseointegration of materials used as implants. The studied coatings demonstrate a positive potential for use as dental and orthopedic implants.

2015 ◽  
Vol 1128 ◽  
pp. 105-111 ◽  
Author(s):  
Mădălina Simona Bălţatu ◽  
Petrică Vizureanu ◽  
Mircea Horia Tierean ◽  
Mirabela Georgiana Minciună ◽  
Dragoş Cristian Achiţei

Metallic biomaterials are used in various applications of the most important medical fields (orthopedic, dental and cardiovascular). The main metallic biomaterials are stainless steels, Co-based alloys and Ti-based alloys. Recently, titanium alloys are getting much attention for biomaterials because these types of materials have very good mechanical properties, good corrosion resistance and an excellent biocompatibility. The paper contains important information about titanium alloys used for biomedical applications, which are considered the most widely. It is very important to understand the microstructural evolution and property-microstructure relationship in implant alloys. In the present paper, authors present a short literature review on general aspects of promising biocompatible binary Ti-Mo alloys compared with CoCr and stainless steel alloys, as an alternative of the known metallic biomaterials. This alloys show superior mechanical compatibility and very good biocompatibility. The aim of this review is to highlight the mechanical properties for several types of biomaterials, their application in medical field, especially the Ti-Mo group.


2013 ◽  
Vol 551 ◽  
pp. 217-222 ◽  
Author(s):  
Masahiko Ikeda ◽  
Masato Ueda ◽  
Kaoru Imaizumi ◽  
Mitsuo Niinomi

This paper is a review of results for Ti-Mn [1], Ti-Mn-Al [2] and Ti-Mn-Fe [3] alloys that have been previously published. Titanium alloys, especially beta-type titanium alloys, have high specific strength, excellent corrosion resistance and good biocompatibility. Unfortunately, applications of titanium alloys are limited by their relatively higher cost. One reason is the use of rare and expensive metallic elements, such as vanadium and molybdenum, as a beta stabilizer. In order to reduce the cost, inexpensive and abundantly available metallic elements should be used as beta stabilizers. Manganese was adopted as a beta stabilizer because it is an abundant metallic element in the Earth’s crust and is relatively low in cost. The heat treatment behavior of Ti-Mn, Ti-Mn-Al and Ti-Mn-Fe alloys was investigated through electrical resistivity and Vickers hardness measurements, X-ray diffraction measurements to identify phase constitution, and observations using a light microscope [1], [2] and [3].


2012 ◽  
Vol 713 ◽  
pp. 133-138
Author(s):  
Timotius Pasang ◽  
J.C. Sabol ◽  
Wojciech Z. Misiolek ◽  
Ryan Mitchell ◽  
Andrew B. Short ◽  
...  

Butt welded joins were produced between commercially pure (CP) titanium and various titanium alloys using an electron beam welding technique. The materials used were CP Ti, Ti-6Al-4V (Ti64) and Ti-5Al-5V-5Mo-3Cr (Ti5553). Grain boundary structures, mechanical properties, compositional profiles across the welds and fracture modes are presented. CP Ti has always been known for its excellent weldability, Ti64 has good weldability and, preliminary results indicated that Ti5553 alloy is also weldable.


2004 ◽  
Vol 820 ◽  
Author(s):  
Jaap M.J. den Toonder ◽  
Auke R. van Dijken

AbstractThe mechanical properties of the thin film materials used in RF-MEMS are crucial for the reliability and proper functioning of the devices. In this paper we study a large number of aluminum alloys as possible RF-MEMS thin film materials. The yield strength and creep properties are measured using nano-indentation. The results show that the mechanical properties of thin aluminum films can be improved substantially by alloying elements. Of the alloys studied in this paper, AlCuMgMn in particular seems quite promising as a thin film material for RF MEMS, having both high yield strength and little creep. Using X-ray diffraction and electron microscopy, the observed effects are partly explained.


2020 ◽  
Author(s):  
HYUN KYU PARK ◽  
Hyuk Lee ◽  
Vanissorn Vimonsatit

Abstract Road failures are often caused by structural weaknesses, and particularly unsealed roads are vulnerable to water as water easily flows into road structures. Moisture susceptibility of materials is an important aspect when pavements are designed as moisture can weaken bonds between aggregates. Pindan soil is a red soil, known as a soft and moisture sensitive soil. Polymer stabilisers have been proved that they can improve soil mechanical properties by providing an internal waterproofing. Studies of the polymer-Pindan soil stabilisation have been focused on engineering performances, but literature shows little information on the fundamental information of Pindan soil. This project focuses on fundamental information of Pindan soil and its improved performances using polymer stabilisers. Plastic index, specific gravity and particle size distribution were tested to obtain the basic properties. Compaction, Unconfined Compressive Strength and California Bearing Ratio tests were performed to determine the mechanical properties. The chemical property was examined using X-ray diffraction. Furthermore, the waterproof effect of the polymers on the stabilised Pindan soil was investigated from capillary rise tests. In addition, the mechanical properties of individual soil grains were investigated using nanoindentation tests. The materials used for this investigation primarily consisted of Pindan soil collected in Broome, Western Australia, and three polymer products manufactured in Australia. Based on the results, it is evident that the failure behaviour, strain and strength as well as the basic properties of the soils are affected and changed by the Polymer stabilisers. The type of polymer influenced the optimum moisture contents and strengths rather than the amount of polymer. Similarly, Nanoindentation technology provided various information such as elastic modulus, hardness, packing density, stiffness, cohesion and fracture toughness of soils at nano-scales. Polymers can reduce water ingress and minimise moisture in the pavement structures. Thus, the structures can maintain its strength and prevent deformation, which will increase the lifetime of unsealed pavements.


2021 ◽  
Vol 8 ◽  
Author(s):  
Stéphanie Delannoy ◽  
Sarah Baïz ◽  
Pascal Laheurte ◽  
Laurence Jordan ◽  
Frédéric Prima

The objective of this study was to develop a thermo-mechanical strategy to create a radial elasticity gradient in a β metastable Ti-Nb-Zr alloy, and to characterize it in terms of microstructural and mechanical properties. A first investigation was conducted on thin samples of Ti-20Nb-6Zr (at.%) submitted to various thermo-mechanical treatments. Microstructure-properties relationships and elastic variability of this alloy were determined performing uniaxial tensile tests, X-ray diffraction and scanning and transmission electron microscopies. Based on these preliminary results, mechanical deformation was identified as a potential way to lower the elastic modulus of the alloy. In order to create elastically graded pieces, shot-peening was therefore carried out on thicker samples to engender surface deformation. In this second part of the work, local mechanical properties were evaluated by instrumented micro-indentation. Experimental observations demonstrated that shot-peening enabled to locally induce martensitic transformation on surface, and a decrease in indentation elastic modulus from 85 to 65 GPa over 400 μm was highlighted. Surface deformation proved to be an efficient way of creating an elasticity gradient in β metastable titanium alloys. This combination of material and process could be suitable to produce dental implants with mechanically enhanced biocompatibility.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1696 ◽  
Author(s):  
Jarosław Jakubowicz

In the last half century, great attention has been paid to materials that can be used in the human body to prepare parts that replace failed bone structures. Of all materials, Ti-based materials are the most desirable, because they provide an optimum combination of mechanical, chemical and biological properties. The successful application of Ti biomaterials has been confirmed mainly in dentistry, orthopedics and traumatology. The Ti biomaterials provide high strength and a relatively low Young’s modulus. Titanium biocompatibility is practically the highest of all metallic biomaterials, however new solutions are being sought to continuous improve their biocompatibility and osseointegration. Thus, the chemical modification of Ti results in the formation of new alloys or composites, which provide new perspectives for Ti biomaterials applications. Great attention has also been paid to the formation of nanostructures in Ti-based biomaterials, which has leads to extremely good mechanical properties and very good biocompatibility. Additionally, the surface treatment applied to Ti-based biomaterials provides faster osseointegration and improve in many cases mechanical properties. The special issue “Ti-Based Biomaterials: Synthesis, Properties and Applications” has been proposed as a means to present recent developments in the field. The articles included in the special issue cover broad aspects of Ti-based biomaterials formation with respect to design theirs structure, mechanical and biological properties, as highlighted in this editorial.


2016 ◽  
Vol 368 ◽  
pp. 138-141
Author(s):  
Martin Ovsík ◽  
Vojtech Šenkeřík ◽  
David Manas ◽  
Miroslav Maňas ◽  
Michal Stanek ◽  
...  

Cross-linking is a process in which polymer chains are associated through chemical bonds. Radiation, which penetrated through specimens and reacted with the cross-linking agent, gradually formed cross-linking (3D net), first in the surface layer and then in the total volume, which resulted in considerable changes in specimen behaviour. The aim of the experiments was to study the influence of different doses of Beta radiation to the structure and micro-mechanical properties of polypropylene filled by 30% glass fiber (PP+GF). Hard surface layers of PP+GF can be formed by radiation cross-linking by β – radiation with doses of 33, 66 and 99 kGy. Material properties created by β – radiation are measured by micro-indentation test using the DSI method (Depth Sensing Indentation). Individual radiation doses caused structural and micro-mechanical changes which have a significant effect on the final properties of the PP+GF tested. Micro-mechanical properties increased with increasing value of the dose of irradiation material (increase about 49%). The changes were examined and confirmed by X-ray diffraction.


2014 ◽  
Vol 939 ◽  
pp. 68-75 ◽  
Author(s):  
Lygia Maria Policarpio Ferreira ◽  
Maria Helena Robert ◽  
Emin Bayraktar ◽  
Diana Zaimova

The present study deals with a new design of aluminium alloy based composites reinforced with SiC particles and Si/Al2O3 powders through combined methods of powder metallurgy and thixoforming. Moreover, recycled machining chips are used as raw material, specifically AA7075 chips generated in the aeronautical industry. The proposed method is based on forming at high temperatures a compacted mixture of metal chips and reinforcing particles, with the metal in thixotropic semi-solid condition. Composites containing different SiC weight fractions (10, 20 and 30%) were produced and had their microstructure analyzed. Mechanical properties were evaluated by means of micro-indentation tests. General results show the feasibility of producing composites by the proposed route. Products with good mechanical properties could be obtained. The process, even still not completely optimized as some improvement still must be achieved, can bring a new possibility for the production of a noble material from recycled wastes, particularly important in the high energy spending Al industries.


2021 ◽  
pp. 002199832199321
Author(s):  
S Khammassi ◽  
M Tarfaoui ◽  
K Lafdi

The first phase of this work aims to use the right additive nano-fillers choices, such as exfoliated Graphite (ExG), increasing the mechanical, electrical, and thermal performances. In this work, we are interested in quantifying the effect particles' size on a polymer matrix's performance. For this, three sets of exfoliated polymers filled with Graphite, characterized by three particle sizes, called meshes 50, 100, and 150, were investigated. In this analysis, exfoliated Graphite reinforced polymers were subjected to indentation tests to define local mechanical properties. The sample is an epoxy 862 matrix reinforced with exfoliated graphite additives. For each specific size, the additives are mixed in percentages of 0% in the act of control, 0.5%, 4%, 8%, and 16% by weight. Matching pure polymers, polymers reinforced by exfoliated Graphite have proven to have significant improvements in local elastic properties (such as modulus, hardness, stiffness, etc.). Results showed that the reinforced epoxy's local mechanical properties are affected by the size and the percentage of nano-additives. Through the inspection of the load-displacement curve, it can be concluded that the nano-additive has a significant influence on the plastic mechanical properties of the sample. Therefore, the size of nanoparticles has significantly improved in material properties.


Sign in / Sign up

Export Citation Format

Share Document