scholarly journals A Case Study of Waste Scrap Tyre-Derived Carbon Black Tested for Nitrogen, Carbon Dioxide, and Cyclohexane Adsorption

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4445 ◽  
Author(s):  
Zuzana Jankovská ◽  
Marek Večeř ◽  
Ivan Koutník ◽  
Lenka Matějová

Waste scrap tyres were thermally decomposed at the temperature of 600 °C and heating rate of 10 °C·min−1. Decomposition was followed by the TG analysis. The resulting pyrolytic carbon black was chemically activated by a KOH solution at 800 °C. Activated and non-activated carbon black were investigated using high pressure thermogravimetry, where adsorption isotherms of N2, CO2, and cyclohexane were determined. Isotherms were determined over a wide range of pressure, 0.03–4.5 MPa for N2 and 0.03–2 MPa for CO2. In non-activated carbon black, for the same pressure and temperature, a five times greater gas uptake of CO2 than N2 was determined. Contrary to non-activated carbon black, activated carbon black showed improved textural properties with a well-developed irregular mesoporous-macroporous structure with a significant amount of micropores. The sorption capacity of pyrolytic carbon black was also increased by activation. The uptake of CO2 was three times and for cyclohexane ten times higher in activated carbon black than in the non-activated one. Specific surface areas evaluated from linearized forms of Langmuir isotherm and the BET isotherm revealed that for both methods, the values are comparable for non-activated carbon black measured by CO2 and for activated carbon black measured by cyclohexane. It was found out that the N2 sorption capacity of carbon black depends only on its specific surface area size, contrary to CO2 sorption capacity, which is affected by both the size of specific surface area and the nature of carbon black.

2021 ◽  
Author(s):  
Liangcai Wang ◽  
Xin Feng ◽  
Huanhuan Ma ◽  
Jielong Wu ◽  
Yu Chen ◽  
...  

Abstract This work provides an idea for efficient and harmless utilization of lignin and further evaluated the textural properties of lignin-derived activated carbon/specific capacitance relationship. The yield of cellulose-doped apricot shell lignin (ASLC) was 30.42%. H3PO4/KOH was used to assist the preparation of ASLC-derived activated carbon (AAC) for capacitors. The specific surface areas of the as-obtained AAC-P-3 and AAC-K-2 were 1475.16 m2/g and 2136.56 m2/g, respectively. The specific capacitances of AAC-P-3 and AAC-K-2 were 169.14 F/g and 236.00 F/g, respectively, upon the current density of 0.50 A/g. In capacitors containing aqueous KOH as the electrolyte, the AR2 (0.983) between specific surface area and specific capacitance was highest, followed by the AR2 (0.978) between Vmicro/Vmeso and specific capacitance, the AR2 (0.975) between pore-wall thickness and specific capacitance. Consequently, the specific capacitances of the AACs depend not only the specific surface area, but also on the Vmicro/Vmeso, pore-wall thickness, and Vmicro.


1973 ◽  
Vol 46 (1) ◽  
pp. 192-203 ◽  
Author(s):  
R. A. Klyne ◽  
B. D. Simpson ◽  
M. L. Studebaker

Abstract 1. The various tint tests correlate with each other—it does not make much difference which of the three procedures is used. The discrimination between similar blacks is comparable. Specific surface areas obtained by the three methods are comparable and differences appear to be due to experimental errors. (Compare Figures 5–7). 2. Surface areas larger than some 90 to 100 m2/g cannot be reliably determined from tint strength measurements alone. 3. Structure exerts a pronounced effect on tint strength of furnace blacks, especially above 90 to 100 m2/g. Porosity and/or composition are apparently also variables which affect tinting strength. 4. Densichron reflectance on the dry carbon black can be used to estimate specific surface areas up to about 140 m2/g; but, since theabsoluteerrorincreases as the specific surface area increases, this method loses some of its reliability at values above about 110 m2/g. The relative error in reflectance determinations does not vary greatly over the furnace-black range. Densichron reflectance is influenced by composition, evidently due to composition-related differences in optical properties of the carbons. 5. In CTAB adsorption measurements, titration errors and handling errors tend to be rather constant for blacks of different surface area. Hence, CTAB permits better discrimination among blacks of small particle size. 6. The errors in Densichron reflectance surface area increase with specific surface area. Hence, the deviations between CTAB and reflectance surface area which are due to experimental error increase with the surface area of the sample.


2011 ◽  
Vol 65 (4) ◽  
pp. 355-362
Author(s):  
Tatjana Novakovic ◽  
Ljiljana Rozic ◽  
Zorica Vukovic ◽  
Srdjan Petrovic

Sintering and crystallization of low-density polyethylene glycol (PEG) and lanthanum, La(III)-doped Al2O3 aerogels prepared from aluminum isopropoxide were investigated. The sintering behavior of non-doped and doped aerogels was examined by following the change of specific surface area with isothermal heat-treatment. The specific surface area and crystalline phases of non-doped and PEG+La(III)-doped aerogels were determined, and the effects of dopants on the sintering and crystallization of Al2O3 aerogels are discussed. Isothermal sintering experiments showed that the sintering mechanism of non-doped and PEG+La(III)-doped Al2O3 aerogels is surface diffusion. The specific surface areas of alumina samples decrease rapidly during the initial period of sintering, and more slowly with prolonged sintering time. The change of the porous structure is correlated with the phase transformation of ?-Al2O3 during calcinations of Al2O3 aerogels. The surface area of non-doped Al2O3 aerogels came to about 20 m2g-1 with heat-treatment at 1100?C because of crystallization of ?-Al2O3 after densification. In the case of heattreatment at 1200?C, the largest surface area was observed for PEG+La(III) doped Al2O3 aerogels and the XRD pattern showed only low ordered ?-Al2O3. These indicate that the addition of PEG+La(III) to boehmite sol prevents Al2O3 aerogels from sintering and crystallizing to the ?-Al2O3 phase. Even after 20 h at 1000?C, PEG+La (III)-doped alumina samples maintain a rather good specific surface area (108 m2 g-1) in comparison to the non-doped, containing mainly ?-Al2O3 and minor amounts of ?-Al2O3. Aluminum-oxides with these structural and textural properties are widely used as a coatings and catalyst supports in the field of various catalysis.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3811
Author(s):  
Zhongbao Liu ◽  
Jiayang Gao ◽  
Xin Qi ◽  
Zhi Zhao ◽  
Han Sun

In this study, the hydrothermal method was used to synthesize MIL-101(Cr), and activated carbon (AC) with different content was incorporated in to MIL-101(Cr), thereby obtaining AC-MIL-101(Cr) composite material with a huge specific surface area. The physical properties of MIL-101(Cr) and AC-MIL-101(Cr) were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), nitrogen adsorption and desorption and specific surface area testing, and ethanol vapor adsorption performance testing. The results show that with the increase of activated carbon content, the thermal stability of AC-MIL-101(Cr) is improved. Compared with the pure sample, the BET specific surface area and pore volume of AC-MIL-101(Cr) have increased; In the relative pressure range of 0–0.4, the saturated adsorption capacity of AC-MIL-101(Cr) to ethanol vapor decreases slightly. It is lower than MIL-101(Cr), but its adsorption rate is improved. Therefore, AC-MIL-101(Cr)/ethanol vapor has a good application prospect in adsorption refrigeration systems. The exploration of AC-MIL-101(Cr) composite materials in this paper provides a reference for the future application of carbon-based/MOFS composite adsorbent/ethanol vapor working fluid in adsorption refrigeration.


2015 ◽  
Vol 749 ◽  
pp. 17-21 ◽  
Author(s):  
Joanna Sreńscek Nazzal ◽  
Karolina Glonek ◽  
Jacek Młodzik ◽  
Urszula Narkiewicz ◽  
Antoni W. Morawski ◽  
...  

Microporous carbons prepared from commercial activated carbon WG12 by KOH and/or ZnCl2 treatment were examined as adsorbents for CO2 capture. The micropore volume and specific surface area of the resulting carbons varied from 0.52 cm3/g (1374 m2/g) to 0.70 cm3/g (1800 m2/g), respectively. The obtained microporous carbon materials showed high CO2 adsorption capacities at 40 bar pressure reaching 16.4 mmol/g.


2021 ◽  
Vol 15 (2) ◽  
pp. 131-144
Author(s):  
Chunjiang Jin ◽  
Huimin Chen ◽  
Luyuan Wang ◽  
Xingxing Cheng ◽  
Donghai An ◽  
...  

In this study, aspen wood sawdust was used as the raw material, and Fe(NO3)3 and CO2 were used as activators. Activated carbon powder (ACP) was produced by the one-step physicochemical activation method in an open vacuum tube furnace. The effects of different mass ratios of Fe(NO3)3 and aspen wood sawdust on the pore structure of ACP were examined under single-variable experimental conditions. The mass ratio was 0–0.4. The detailed characteristics of ACP were examined by nitrogen adsorption, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The adsorption capacity of ACP was established by simulating volatile organic compounds (VOCs) using ethyl acetate. The results showed that ACP has a good nanostructure with a large pore volume, specific surface area, and surface functional groups. The pore volume and specific surface area of Fe-AC-0.3 were 0.26 cm3/g and 455.36 m2/g, respectively. The activator played an important role in the formation of the pore structure and morphology of ACP. When the mass ratio was 0–0.3, the porosity increased linearly, but when it was higher than 0.3, the porosity decreased. For example, the pore volume and specific surface area of Fe-AC-0.4 reached 0.24 cm3/g and 430.87 m2/g, respectively. ACP presented good VOC adsorption performance. The Fe-AC-0.3 sample, which contained the most micropore structures, presented the best adsorption capacity for ethyl acetate at 712.58 mg/g. Under the action of the specific reaction products nitrogen dioxide (NO2) and oxygen, the surface of modified ACP samples showed different rich C/O/N surface functional groups, including C-H, C=C, C=O, C-O-C, and C-N.


1996 ◽  
Vol 454 ◽  
Author(s):  
Weiming Lu ◽  
D. D. L. Chung

ABSTRACTActivated carbon filaments of diameter ∼0.1 μm, main pore size (BJH) 55 Å, specific surface area 1310 m2/g and yield 36.2% were obtained by activating carbon filaments of diameter ∼ 0.1 urn in C02 + N2 (1:1) at 970°C for 80 min. Prior to this activation, the filaments were surface oxidized by exposure to ozone.


Sign in / Sign up

Export Citation Format

Share Document