scholarly journals A Novel Synthetic Precursor of Styryl Sulfone Neuroprotective Agents Inhibits Neuroinflammatory Responses and Oxidative Stress Damage through the P38 Signaling Pathway in the Cell and Animal Model of Parkinson’s Disease

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5371
Author(s):  
Ying Guo ◽  
Zhizhong Ma ◽  
Xianling Ning ◽  
Ying Chen ◽  
Chao Tian ◽  
...  

A novel class of styryl sulfones were designed and synthesized as CAPE derivatives by our work team, which showed a multi-target neuroprotective effect, including antioxidative and anti-neuroinflammatory properties. However, the underlying mechanisms remain unclear. In the present study, the anti-Parkinson’s disease (PD) activity of 10 novel styryl sulfone compounds was screened by the cell viability test and the NO inhibition test in vitro. It was found that 4d exhibited the highest activity against PD among them. In a MPTP-induced mouse model of PD, the biological activity of 4d was validated through suppressing dopamine neurotoxicity, microglial activation, and astrocytes activation. With compound 4d, we conducted the mechanistic studies about anti-inflammatory responses through inhibition of p38 phosphorylation to protect dopaminergic neurons, and antioxidant effects through promoting nuclear factor erythroid 2-related factor 2 (Nrf2). The results revealed that 4d could significantly inhibit 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/1-methyl-4-phenylpyridinium (MPTP/MPP+)-induced p38 mitogen-activated protein kinase (MAPK) activation in both in vitro and in vivo PD models, thus inhibiting the NF-κB-mediated neuroinflammation-related apoptosis pathway. Simultaneously, it could promote Nrf2 nuclear transfer, and upregulate the expression of antioxidant phase II detoxification enzymes HO-1 and GCLC, and then reduce oxidative damage.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Renrong Wei ◽  
Cuiping Rong ◽  
Qingfeng Xie ◽  
Shouhai Wu ◽  
Yuchao Feng ◽  
...  

Parkinson’s disease (PD) is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra (SN)-striatum circuit, which is associated with glial activation and consequent chronic neuroinflammation. Optimized Yinxieling Formula (OYF) is a Chinese medicine that exerts therapeutical effect and antiinflammation property on psoriasis. Our previous study has proven that pretreatment with OYF could regulate glia-mediated inflammation in an acute mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Given that PD is a chronic degeneration disorder, this study applied another PD animal model induced by striatal injection of 6-hydroxydopamine (6-OHDA) to mimic the progressive damage of the SN-striatum dopamine system in rats. The OYF was administrated in the manner of pretreatment plus treatment. The effects of the OYF on motor behaviors were assessed with the apomorphine-induced rotation test and adjusting steps test. To confirm the effect of OYF on dopaminergic neurons and glia activation in this model, we analyzed the expression of tyrosine hydroxylase (TH) and glia markers, ionized calcium-binding adapter molecule 1 (Iba-1), and glial fibrillary acidic protein (GFAP) in the SN region of the rat PD model. Inflammation-associated factors, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), were further evaluated in this model and in interferon-γ- (INF-γ-) induced murine macrophages RAW264.7 cells. The results from the in vivo study showed that OYF reversed the motor behavioral dysfunction in 6-OHDA-induced PD rats, upregulated the TH expression, decreased the immunoreactivity of Iba-1 and GFAP, and downregulated the mRNA levels of TNF-α and COX-2. The OYF also trended to decrease the mRNA levels of IL-1β and iNOS in vivo. The results from the in vitro study showed that OYF significantly decreased the mRNA levels of TNF-α, IL-1β, IL-6, iNOS, and COX-2. Therefore, this study suggests that OYF exerts antiinflammatory effects, which might be related to the protection of dopaminergic neurons in 6-OHDA-induced chronic neurotoxicity.


US Neurology ◽  
2011 ◽  
Vol 07 (02) ◽  
pp. 109 ◽  
Author(s):  
Tanya Simuni ◽  
D James Surmeier ◽  
◽  

Parkinson's disease (PD) is the second most common neurodegenerative disease affecting 1 % of the population above the age 65. The principal motor symptoms of PD are attributable to the preferential loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Recent studies demonstrate that dopaminergic (DA) neurons in the SNc, as well as many neurons in other regions affected by PD, have a distinctive physiologic phenotype. They are autonomous L-type Cav1.3 Ca2+channels pacemakers. Continuous Ca2+influx results in increased oxidative stress that may explain the selective vulnerability of these neurons. More importantly for PD, blocking these channels with isradipine, the most potent of the dihydropyridine (DHP) channel antagonists at L-type Ca2+channels with the Cav1.3 subunit, protects these neurons inin vitroandin vivomodels of parkinsonism. Neuroprotective effect is achieved at the serum concentrations that can be achieved with the doses approved for human use. Recent epidemiologic data also points to a reduced risk of PD with chronic use of specifically centrally acting DHP Ca2+channel antagonists. Isradipine is an approved agent for the treatment of hypertension. Our pilot data demonstrate acceptable dose-dependent tolerability of isradipine in early PD. A pilot Phase II multicenter, double-blind, placebo-controlled, safety, tolerability, and dosage finding study of isradipine in early PD has completed recruitment, with the results of the study to be available in the near future. Results of that study will inform the design of the planned Phase III pivotal efficacy trial of isradipine, as a disease modifying agent in early PD.


2020 ◽  
Author(s):  
dewei he ◽  
dianfeng liu ◽  
ang zhou ◽  
xiyu gao ◽  
yufei zhang ◽  
...  

Abstract Background Parkinson's disease (PD), the second largest neurodegenerative disease seriously affects human health. Microglia, the main immune cells in the brain participate in the innate immune response in the central nervous system (CNS). Studies have shown that microglia can be polarized into pro-inflammatory M1 and anti-inflammatory M2 phenotypes. Accumulated evidences suggest that over-activated M1 microglia release pro-inflammatory mediators that damage neurons and lead to Parkinson's disease (PD). In contrast, M2 microglia release neuroprotective factors and exert the effects of neuroprotection. Camptothecin (CPT), an extract of the plant Camptotheca acuminate, has been reported to have anti-inflammation and antitumor effects. However the effect of CPT on microglia polarization and microglia-mediated inflammation responses has not been reported. Therefore, we aim to explore the effect of CPT on microglia polarization and its underlying mechanism on neuroinflammation. Methods C57BL/6 mice (25–30 g) were injected LPS or PBS into the substantia nigra (SN). Open-Field Test and Immunohistochemistry were performed to test the dyskinesia of mice and the loss of neurons in the substantia nigra (SN). Microglia cell line BV-2, the neuroblastoma SH-SY5Y and dopaminergic neuron MN9D cell were cultured. Cytotoxicity assay, reverse transcription quantitative real-time polymerase chain reaction (RT-PCR), Western blot, ELISA and Immunofluorescence staining were performed. All results were presented with mean ± SD. Results In vivo, CPT improved dyskinesia of mice, reduced the loss of neurons in the substantia nigra (SN) and inhibited neuro-inflammatory responses in LPS-injected mice. In vitro, CPT inhibited M1 polarization of microglia and promotes M2 polarization via the AKT/Nrf2/HO-1-NF-κB signal axis. Furthermore, CPT protected the neuroblastoma cell line SH-SY5Y and dopaminergic neuron cell line MN9D from neurotoxicity of mediated by microglia activation. Conclusion CPT regulates the microglia polarization phenotype via the AKT/Nrf2/HO-1-NF-κB signal axis, inhibits neuro-inflammatory responses and exerts neuroprotective effects in vivo and in vitro.


Marine Drugs ◽  
2016 ◽  
Vol 14 (10) ◽  
pp. 187 ◽  
Author(s):  
Chien-Wei Feng ◽  
Han-Chun Hung ◽  
Shi-Ying Huang ◽  
Chun-Hong Chen ◽  
Yun-Ru Chen ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5558
Author(s):  
Juan Chen ◽  
Yixuan Chen ◽  
Yangfan Zheng ◽  
Jiawen Zhao ◽  
Huilin Yu ◽  
...  

This research assessed the molecular mechanism of procyanidins (PCs) against neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its metabolite 1-methyl-4-phenylpyridinium (MPP+) induced Parkinson’s disease (PD) models. In vitro, PC12 cells were incubated with PCs or deprenyl for 24 h, and then exposed to 1.5 mM MPP+ for 24 h. In vivo, zebrafish larvae (AB strain) 3 days post-fertilization (dpf) were incubated with deprenyl or PCs in 400 μM MPTP for 4 days. Compared with MPP+/MPTP alone, PCs significantly improved antioxidant activities (e.g., glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT)), and decreased levels of reactive oxygen species (ROS) and malondialdehyde (MDA). Furthermore, PCs significantly increased nuclear Nrf2 accumulation in PC12 cells and raised the expression of NQO1, HO-1, GCLM, and GCLC in both PC12 cells and zebrafish compared to MPP+/MPTP alone. The current study shows that PCs have neuroprotective effects, activate the nuclear factor-erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway and alleviate oxidative damage in MPP+/MPTP-induced PD models.


Author(s):  
Yinquan Fang ◽  
Qingling Jiang ◽  
Shanshan Li ◽  
Hong Zhu ◽  
Rong Xu ◽  
...  

AbstractAlthough β-arrestins (ARRBs) regulate diverse physiological and pathophysiological processes, their functions and regulation in Parkinson’s disease (PD) remain poorly defined. In this study, we show that the expression of β-arrestin 1 (ARRB1) and β-arrestin 2 (ARRB2) is reciprocally regulated in PD mouse models, particularly in microglia. ARRB1 ablation ameliorates, whereas ARRB2 knockout aggravates, the pathological features of PD, including dopaminergic neuron loss, neuroinflammation and microglia activation in vivo, and microglia-mediated neuron damage in vitro. We also demonstrate that ARRB1 and ARRB2 produce adverse effects on inflammation and activation of the inflammatory STAT1 and NF-κB pathways in primary cultures of microglia and macrophages and that two ARRBs competitively interact with the activated form of p65, a component of the NF-κB pathway. We further find that ARRB1 and ARRB2 differentially regulate the expression of nitrogen permease regulator-like 3 (Nprl3), a functionally poorly characterized protein, as revealed by RNA sequencing, and that in the gain- and loss-of-function studies, Nprl3 mediates the functions of both ARRBs in microglia inflammatory responses. Collectively, these data demonstrate that two closely related ARRBs exert opposite functions in microglia-mediated inflammation and the pathogenesis of PD which are mediated at least in part through Nprl3 and provide novel insights into the understanding of the functional divergence of ARRBs in PD.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
RenRong Wei ◽  
Jing OuYang ◽  
WeiXian Lin ◽  
TongXiang Lin

Parkinson’s disease (PD) is marked by the progressive degeneration of dopaminergic neurons (DAN) accompanied by glial activation. Thus, inhibiting glial activation that occurs during this disease could be an effective method for treating PD. Optimized Yinxieling Formula (OYF), a Chinese medicinal formula, which is used to efficiently treat autoimmune disease psoriasis, has been proved to display potential immunomodulatory effects in inflammation-associated diseases. This study assessed the therapeutic benefits of OYF on glial-mediated neuroinflammation and neuroprotection in PD models in vitro and in vivo. First, the results showed that OYF significantly suppresses LPS-induced proinflammatory cytokine secretion and attenuates the overall inflammatory responses in BV-2 cells. Second, in vivo studies confirm that while the validity of our MPTP-induced PD mouse models possesses activated glia and significant neurobehavioral dysfunction, pretreatment with OYF prevents glial activation and ameliorates movement dysfunction in the MPTP-induced PD mouse models as evaluated by the pole and rotarod tests. Third, transcriptomic analyses were carried out to reveal the underlying molecular mechanism of the OYF treatment. Sixteen pathways were significantly upregulated in the OYF-treated PD model mice, including the cytokine-cytokine receptor interaction, cell adhesion molecules, coagulation, and complement cascades. Fifteen pathways were significantly downregulated in the OYF-treated PD model mice, such as the natural killer cell mediated cytotoxicity, hematopoietic cell lineage, phagosome, and others. These pathways share direct or indirect features of immunomodulation, suggesting that the physiological effects of OYF involve key roles of immune and inflammation regulations. Therefore, we prove that OYF is a useful immunomodulatory formula in developing prevention and treatment methods for neurodegenerative disease PD.


2018 ◽  
Vol 47 (4) ◽  
pp. 1453-1464 ◽  
Author(s):  
Yu-Long Lan ◽  
Jun-Jun Zhou ◽  
Jing Liu ◽  
Xiao-Kui Huo ◽  
Ya-Li Wang ◽  
...  

Background/Aims: Uncaria rhynchophylla, known as “Gou-teng”, is a traditional Chinese medicine (TCM) used to extinguish wind, clear heat, arrest convulsions, and pacify the liver. Although U. rhynchophylla has a long history of being often used to treat central nervous system (CNS) diseases, its efficacy and potential mechanism are still uncertain. This study investigated neuroprotective effect and the underlying mechanism of U. rhynchophylla extract (URE) in MPP+-induced SH-SY5Y cells and MPTP-induced mice. Methods: MPP+-induced SH-SY5Y cells and MPTP-induced mice were used to established Parkinson’s disease (PD) models. Quantitative proteomics and bioinformatics were used to uncover proteomics changes of URE. Western blotting was used to validate main differentially expressed proteins and test HSP90 client proteins (apoptosis-related, autophagy-related, MAPKs, PI3K, and AKT proteins). Flow cytometry and JC-1 staining assay were further used to confirm the effect of URE on MPP+-induced apoptosis in SH-SY5Y cells. Gait analysis was used to detect the behavioral changes in MPTP-induced mice. The levels of dopamine (DA) and their metabolites were examined in striatum (STR) by HPLC-EC. The positive expression of tyrosine hydroxylase (TH) was detected by immunohischemical staining and Western blotting. Results: URE dose-dependently increased the cell viability in MPP+-induced SH-SY5Y cells. Quantitative proteomics and bioinformatics results confirmed that HSP90 was an important differentially expressed protein of URE. URE inhibited the expression of HSP90, which further reversed MPP+-induced cell apoptosis and autophagy by increasing the expressions of Bcl-2, Cyclin D1, p-ERK, p-PI3K p85, PI3K p110α, p-AKT, and LC3-I and decreasing cleaved caspase 3, Bax, p-JNK, p-p38, and LC3-II. URE also markedly decreased the apoptotic ratio and elevated mitochondrial transmembrane potential (DΨm). Furthermore, URE treatment ameliorated behavioral impairments, increased the contents of DA and its metabolites and elevated the positive expressions of TH in SN and STR as well as the TH protein. Conclusions: URE possessed the neuroprotective effect in vivo and in vitro, regulated MAPK and PI3K-AKT signal pathways, and inhibited the expression of HSP90. U. rhynchophylla has potentials as therapeutic agent in PD treatment.


Sign in / Sign up

Export Citation Format

Share Document