scholarly journals Finite Element Analysis of Glass Fiber-Reinforced Polymer-(GFRP) Reinforced Continuous Concrete Beams

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4468
Author(s):  
Hazem Ahmad ◽  
Amr Elnemr ◽  
Nazam Ali ◽  
Qudeer Hussain ◽  
Krisada Chaiyasarn ◽  
...  

Fiber-reinforced concrete (FRC) is a competitive solution for the durability of reinforced structures. This paper aims to observe the moment redistribution behavior occurring due to flexural and shear loading in Glass Fiber-Reinforced Polymer- (GFRP) reinforced continuous concrete beams. A rectangular cross-section was adopted in this study with dimensions of 200 mm in width and 300 mm in depth with a constant shear span-to-depth ratio of 3. The reinforcement ratio for the top and bottom were equal at sagging and hogging moment regions. A finite element model was created using Analysis System (ANSYS) and validated with the existing experimental results in the literature review. Based on the literature review, the parametric study was conducted on twelve beam specimens to evaluate the influence of concrete compressive strength, transversal GFRP stirrups ratio, and longitudinal reinforcement ratio on the redistribution of the moment in beams. Several codes and guidelines adopted different analytical models. The Canadian Standards Association (CSA) S806 adopted the modified compression field theory in predicting the shear capacity of the simply supported beams. Recently, various researchers encountered several factors and modifications to account for concrete contribution, longitudinal, and transverse reinforcement. A comparison between the predicting shear capacity of the generated finite element model, the analytical model, and the existing data from the literature was performed. The generated finite element model showed a good agreement with the experimental results, while the beam specimens failed in shear after undergoing significant moment redistribution from hogging to sagging moment region. The moment distribution observed about 21.5% from FEM of beam specimen GN-1.2-0.48-d, while the experimental results achieved 24% at failure load. For high strength concrete presented in beam specimen GH-1.2-0.63-d, the result showed about 20.2% moment distribution, compared to that achieved experimentally of 23% at failure load.

2021 ◽  
Vol 7 ◽  
pp. 13-31
Author(s):  
Hazem Shebl ◽  
Amr El-Nemr

Fiber-Reinforced Concrete (FRC) is a competitive solution for the durability of reinforced structures. This paper aims to observe moment redistribution behavior occurring due to flexural and shear loading in GFRP reinforced continuous concrete beams. A rectangular cross-section was adopted in this study with dimensions of 200 mm in width and 300 mm in depth with a constant shear span-to-depth ratio of 3. The reinforcement ratio for the top and bottom were equal at sagging and hogging moment regions. A finite element model was created using ANSYS and validated with the existing experimental results in the literature review. Based on the literature review, the parametric study was conducted on twelve beam specimens to evaluate the influence of concrete compressive strength, transversal GFRP stirrups ratio, and longitudinal reinforcement ratio on the redistribution of the moment in beams. Several codes and guidelines adopted different analytical models. The CSA S806 adopted the modified compression field theory in predicting the shear capacity of the simply supported beams. Recently, various researchers encountered several factors and modifications to account for concrete contribution, longitudinal and transverse reinforcement. A comparison between the predicting shear capacity of the generated finite element model and the analytical model and the existing data from literature was held. The generated finite element model showed a good agreement with experimental results while the beam specimens failed in shear after undergoing significant moment redistribution from hogging to sagging moment region. Doi: 10.28991/CEJ-SP2021-07-02 Full Text: PDF


2014 ◽  
Vol 501-504 ◽  
pp. 2479-2483
Author(s):  
Wei Bin Yuan ◽  
Chang Yi Chen

The flattening behaviour of angle section beams subjected to pure bending is studied in this paper. Analytical solutions for static instabilities of angle section beams subjected to pure bending about its weak axis are derived using energy methods. Nonlinear finite element model using the code ANSYS is developed to simulate nonlinear snap-through instability of angle section beams under pure bending. The optimization assumption about flattening shape of the leg is proposed, through comparison of between the present solutions, experimental results, and the finite element results.


2013 ◽  
Vol 554-557 ◽  
pp. 1045-1054 ◽  
Author(s):  
Welf Guntram Drossel ◽  
Reinhard Mauermann ◽  
Raik Grützner ◽  
Danilo Mattheß

In this study a numerical simulation model was designed for representing the joining process of carbon fiber-reinforced plastics (CFRP) and aluminum alloy with semi-tubular self-piercing rivet. The first step towards this goal is to analyze the piercing process of CFRP numerical and experimental. Thereby the essential process parameters, tool geometries and material characteristics are determined and in finite element model represented. Subsequently the finite element model will be verified and calibrated by experimental studies. The next step is the integration of the calibrated model parameters from the piercing process in the extensive simulation model of self-piercing rivet process. The comparison between the measured and computed values, e.g. process parameters and the geometrical connection characteristics, shows the reached quality of the process model. The presented method provides an experimental reliable characterization of the damage of the composite material and an evaluation of the connection performances, regarding the anisotropic property of CFRP.


2016 ◽  
Vol 858 ◽  
pp. 913-916 ◽  
Author(s):  
Konstantinos Zekentes ◽  
Konstantin Vassilevski ◽  
Antonis Stavrinidis ◽  
George Konstantinidis ◽  
Maria Kayambaki ◽  
...  

Purely vertical 4H-SiC JFETs have been modeled by using three different approaches: the analytical model, the finite element model and the compact model. The results of the modeling have been compared with experimental results on a series of fabricated self-aligned devices with two different channel lengths (0.3 and 1.1μm) and various channel widths (1.5, 2, 2.5, 3, 4 and 5 μm). For all the considered models I-V and C-V characteristics could be satisfactorily simulated.


Author(s):  
M. M. Shokrieh ◽  
A. R. Ghanei Mohammadi

In this paper, a new finite element model has been introduced with the aim of efficient investigation of residual thermal stresses in fiber-reinforced composites, in which the inhomogeneous interphase is considered. For the inhomogeneous interphase modeling, four different kinds of material properties variation of the interphase (power, reciprocal, cubic and exponential variations) with the radial coordinate have been used. A mono fiber circular unit cell is considered using a finite element (FE) method. Extending the mono fiber model, FE models with different arrays of fibers have been created to investigate the effects of neighboring fibers on the results. In order to assure the convergence of results, a convergence analysis has been carried out for each of the models. To verify the finite element model, the FE results are compared with theoretical results available in the literature. In this paper, three different types of RVE configurations, circular, square and hexagonal are modeled and the effects of each type of fiber packing are studied. Performing an extensive study, the appropriate boundary conditions for RVEs are presented. The boundary conditions presented in this research are proved to be able to model the overall behavior efficiently.


Sign in / Sign up

Export Citation Format

Share Document